Computational Stability Analysis of Lotka-Volterra Systems

Authors

  • Péter Polcz
  • Gábor Szederkényi

DOI:

https://doi.org/10.1515/hjic-2016-0014

Keywords:

nonlinear systems, Lotka-Volterra models, stability analysis, linear matrix inequalities, Lyapunov function

Abstract

This paper concerns the computational stability analysis of locally stable Lotka-Volterra (LV) systems by searching for appropriate Lyapunov functions in a general quadratic form composed of higher order monomial terms. The Lyapunov conditions are ensured through the solution of linear matrix inequalities. The stability region is estimated by determining the level set of the Lyapunov function within a suitable convex domain. The paper includes interesting computational results and discussion on the stability regions of higher (3,4) dimensional LV models as well as on the monomial selection for constructing the Lyapunov functions. Finally, the stability region is estimated of an uncertain 2D LV system with an uncertain interior locally stable equilibrium point.

Author Biographies

  • Péter Polcz
    Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, Budapest, 1083, HUNGARY
  • Gábor Szederkényi
    Systems and Control Lab, Institute for Computer Science and Control, Hungarian Academy of Sciences, Práter u. 50/A., Budapest, 1083, HUNGARY

Downloads

Published

2016-11-20

Issue

Section

Articles of the Thematic Issue

How to Cite

Computational Stability Analysis of Lotka-Volterra Systems. (2016). Hungarian Journal of Industry and Chemistry, 44(2), 113-120. https://doi.org/10.1515/hjic-2016-0014