Extraction of the Food Additive Tartaric Acid Using Octanol, Methyl Isobutyl Ketone, Kerosene, Mustard Oil, And Groundnut Oil
DOI:
https://doi.org/10.33927/hjic-2023-13Keywords:
tartaric acid, separation, solvent, sustainable process, extraction efficiencyAbstract
Tartaric acid (TA) is a dicarboxylic acid found in bananas, grapes, apples, papaya, cherries, pineapple, pears, mangoes, and tamarind. Due to its widespread use in the food, cosmetic and pharmaceutical industries, it is an essential carboxylic acid. Tartaric acid is produced commercially from wine-industry byproducts and is also present in the industry's effluent. Separating tartaric acid from wastewater is challenging. In this research, tartaric acid was separated from the aqueous phase using chemical and organic solvents such as groundnut oil, mustard oil, kerosene, octanol, and methyl isobutyl ketone (MIBK). Experiments were conducted at 298 K to determine the extraction efficiency (E%) and distribution coefficient (KD). The maximum extraction efficiencies of tartaric acid were found to be 49.01, 25.62, 16.73, 15.89 and 14.29% when using MIBK, octanol, kerosene, mustard oil and groundnut oil, respectively. The results demonstrate the significance of solvent choice in the extraction of tartaric acid with solvents such as MIBK and octanol being more effective at extracting TA from aqueous solutions. On the other hand, the sustainability of the method for separating tartaric acid was highlighted when organic solvents were applied.