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Majority of control algorithms used in industrial processes is PID or PID modification and many of these is badly tuned. 
The reason for this is that the physical constraints of the manipulated variable are neglected. The PID algorithm, 
presented in the paper, is obtained by inverting the standard PID twice and it is able to handle the constraints. The first 
analytical inverting step results in a proper PID inverse. This is then transformed into a state-space model. The state-
space model is then inverted again by using the same method which is applied in Globally Linearizing Control and 
taking into account the physical constraints of the manipulated variable. The constrained PID (C-PID) algorithm obtained 
this way is an anti reset wind-up algorithm which can be readily implemented. A possible design methodology is also 
proposed. At the same time, regarding processes with not higher than second order dynamics, the solution a rigourous 
model-based one. 
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Introduction 

Based on different surveys, 95% of control algorithms 
used in industrial processes is PID or PID modification 
and most of these is badly tuned. The consequence is 
that the dynamic performance is poor and in the worst 
cases even instability might occur. Correct tuning is 
made difficult by several problems which are at the 
same time the reasons for the gap between the control 
engineering practice and the control theory. Only a few 
of these are: 
 
On the practical side: 

• Dynamics of the process is known only roughly. 
• Dynamic properties can change with time (valve 

sticking, wearness, etc.). 
• The algorithm of the used PID modification is not 

known (because of the intellectual property rights, 
the documentation are non-algorithmic-level and 
superficial). 

• For the above reasons the “academic” tuning 
methods cannot be applied. 

• Industrial implementation of algorithms established 
in control theory encounters difficulties. 

 
On the theoretical side: 

• Most of the methods, thriving mathematical 
accuracy, start form assumption which are not 
satisfied in practice. 

• Methods built on idealized models are preferred. 
• Physical constraints are neglected (involving the 

constraints, the inherently linear models become 
non-linear). 

• The methods “in focus” are favoured. 
 
The paper defines a constrained PID algorithm which 
can be readily implemented in practice as well as 
discusses the limitations of PID-based algorithms and 
the possibilities of model-based design. 

The Set of PID Algorithms 

In spite of the two decades of industrial application and 
the intensive academic research providing the 

 
*Correspondence concerning this article should be addressed to T. Chovan (chovan@fmt.vein.hu) 



 82 

theoretical bases, chemical processes are dominated by 
PID or PID-based controllers [1]. The main reasons for 
this dominancy are the role of PID controllers in the 
classical control technologies, their position in the 
engineering curriculum, their availability in DCS’s and 
not at least the efficiency of their application. On the 
top of these, certain model-based techniques, depending 
on the process model, often result in PID algorithms and 
therefore can be implemented as PID controllers. Still 
the research and application of model-based control 
algorithms are rather important, first of all, in cases of 
processes where the application of PID is not efficient. 
The study of model-based control algorithms is getting 
more and more intensive as the technological 
possibilities are opening. At the same time the model of 
the controlled process gains more importance in the 
analysis. 
 
The input of the PID algorithm is the control error ( ), 
the output is the control signal ( ), and its continuous 
time ( ) model is: 
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where 

DI TTK ,,  are the parameters (gain, integral and 
differential time constants) 

Su  is the steady-state control signal corresponding 
to  setpoint )(tw

 
Design of the controller involves the determination of 
the three parameters, while the value of  is often set 
to zero or sometimes to other constant (the I-term 
assures the settling without steady-state error). In case 
of more complex algorithms (e.g. for batch processes) 
the  can be estimated more accurately: 
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where 

0u  is constant (in batch processes it can be used for 
initialization in the different phases) 

),,( KzwFF  is a feed-forward term based on the 
setpoint and the measured disturbance(s) 
( K,z ). 

 
In the process control systems usually different (I) 
modifications are implemented. Transfer functions of 
the common solutions are the following: 
 
Parallel PID (P-PID): 
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Serial PID (S-PID): 
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Filtered parallel PID: 
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where 

]5.0,1.0[∈α , constant 

FT  is the time constant of the first order filter, it 
must be determined during the design. 

 
The above controllers are in continuous time. 
Discretizing with an appropriate sampling time the 
corresponding discrete PID algorithms can be obtained. 
Using a sampling time, orders of magnitude less than 
the characteristic time constant of the process, the 
discrete PID approximate the results the corresponding 
continuous algorithm with the required accuracy. The 
time constant for the great majority of chemical 
processes is several orders of magnitude larger than the 
(hardware) sampling time of 100 msec or 1 sec, realized 
in the process control systems. In case of relatively high 
sampling time, the discrete PID algorithms require 
special analysis. 
 
It is well known that in feedback loops, the zero steady-
state error is maintained by the integrating term, 
therefore the I-term must included in most of the cases. 
At the same time, since the physical control signal is 
constrained, the application of the I-term can lead to 
saturation (wind-up) which is treated by different 
“backward integration” algorithms. 
 
PID blocks of the process control systems allow 
realization of a large variety of PID modifications by 
using different configuration parameters. This solution, 
however, makes the correct application of PID 
algorithms more difficult in itself, since it may require 
the specification further several tens of parameters 
above the three or four tuning parameters. 

Model-Based Algorithms 

The fundamental problem of feedback control is that the 
effect of the actual control output – especially in case of 
higher order systems with dead-time – is delayed in 
time. The small change induces higher control output 
which ultimately can even cause instability. The 
mathematical model of the process allows estimating 
the future effect of the control output and this way 
determining the optimal output. The model predictive 
controllers (MPC) solving the optimal control problem 
over a discrete prediction horizon determine the optimal 
future values of discrete time control outputs. The first 
element is then realized and the calculation is repeated 
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in every sampling period. Industrial application of MPC 
has two decades of history and software tools (e.g. 
RMPCT) for considerably supporting the design have 
been introduced. MPC superposed on PID loops can be 
efficiently used, first of all, for multivariable (MIMO) 
problems. In case of simple SISO problems the 
performance of MPC is comparable to that of a PID, 
however its calculation requirements and 
implementation cost can be significantly higher [2]. 
 
One of the simplest model-based design methods is the 
direct synthesis technique [3]. Its basic idea is that the 
dynamics of the closed loop is defined and the 
controller providing this response is calculated 
backward using the known process model. In case of 
simple process models, very often a PID variant, which 
can be readily implemented on any DCS, is obtained as 
a result. The results of the design for a few simple 
processes are summarized in Table 1, where the closed 
loop is defined as a first order filter (with dead-time) 
and  is the time constant of the closed loop. CT
 
Controllers applying the internal model control (IMC) 
principle are very popular in academic studies. Their 
essence is a feed-forward term containing the inverse of 
the process model. The control offset coming from the 
model error is corrected by feeding back the filtered 
model error. Depending on the process model, often a 
PID algorithm, which can be used in the classical 
feedback scheme, is obtained in this case too. Applying 
the IMC method on the processes in Table 1 and using 
first order filters, the same results given in the table are 
obtained [3]. 
 
Investigating the results in Table 1 it can be concluded 
that up to second order systems the linear-model-based 
methods also result in PID algorithms. It is well known 
too that a large number of simple chemical processes 
can be modeled as first (or second) order system with 
dead-time. These facts support the widely accepted 
experience that a considerable part of chemical process 
control problems can be solved by different PID 
variants. 
 
For systems with dead-time, the Smith predictor which 
can also be well inserted into IMC structures lives its 
renaissance. In case of batch systems it is practical to 
specify the PID algorithm by phases and often more 
complex solutions have to be applied (e.g. dual-mode 
control [4]). 
 

Table 1 Model-based PID algorithms 

Direct synthesis or IMC 
Process model 
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Investigating the results in Table 1 it can be concluded 
that up to second order systems the linear-model-based 
methods also result in PID algorithms. It is well known 
too that a large number of simple chemical processes 
can be modeled as first (or second) order system with 
dead-time. These facts support the widely accepted 
experience that a considerable part of chemical process 
control problems can be solved by different PID 
variants. 
 
For systems with dead-time, the Smith predictor which 
can also be well inserted into IMC structures lives its 
renaissance. In case of batch systems it is practical to 
specify the PID algorithm by phases and often more 
complex solutions have to be applied (e.g. dual-mode 
control [4]). 

Controller Design 

The design of the control systems, in a broader sense, 
involves the selection of manipulated and measured 
variables based on the analysis of degree of freedom, 
sensitivity and dynamic behavior, as well as to select 
the control structure and method. More specifically the 
design means selecting the control algorithm and 
determining its parameters. This later, even now, is 
often solved by using classical methods (Ziegler-
Nichols, Cohen-Coon, integral criteria, etc.) with 
appropriate computer aids and simulation tools. Based 
on simulation, the optimal parameters of the controller 
can also be found by different search methods. There 
are known several modified versions of the classical 
techniques. Model-based approaches (see e.g. Table 1), 
starting from different types of models, derive the 
control equations using the techniques of the linear 
control theory and applying suitable approximations 
(e.g. dead-time: Pade-approximation, nonlinearities: 
Taylor-series). In this case the identified process model 
and the control rule determine the control structure and 
the controller parameters too; separate tuning rules are 
not needed.  
 
Building in the identification of the applied model, in 
the framework of classical schemes (gain scheduling, 
model reference, self tuning), adaptive algorithm can be 



 84 

constructed too. It is advisable to design the supervision 
of their operation in advance.  
 
In the controller design several practical problems 
emerge, making more difficult the efficient application 
of academic results. Problems related to control valves, 
like hystheresis, sticking and nonlinear valve 
characteristic, are well known. 
 
Since the problems of hystheresis and sticking must be 
solved by mechanical engineering techniques they are 
not considered in the design model. (Their indication, at 
the same time is a model-based diagnostic problem). 
Taking into account the strongly nonlinear valve 
characteristics is a prerequisite for the appropriate 
design. 
 
Considering the practical controller design, an 
important element of the model is the allowable range 
of its variables, i.e. taking into account the related 
constraints. In mathematical sense, this changes the not 
constrained linear model into a nonlinear one and makes 
the detailed analysis more difficult (that is why it is 
often neglected in academic studies). 
 
A number of publication confirm that using adequate 
models containing the corresponding constraints, the 
model-based algorithms are more efficient than PID 
controllers tuned with classical methods [5]. 

Constrained PI(D) Algorithm 

Taking into account the physical constraints on the 
control variable the saturation (wind-up) effect can be 
eliminated. Especially in case of batch systems it is 
frequently occurs, that the requirement for fast settling 
generates such huge changes in the control output that 
cannot be realized. This may lead considerably high 
overshoots which prevent achieving good control 
performance. This was our main reason motivating the 
development a constrained PID variant. 
 
To take the physical constraints of the control variable 
into account, two consecutive inverting of a standard 
PID algorithm is applied, as follows: 
1. The inverse of a standard PID is formed in the 

transformed domain. This can be solved 
reciprocating the transfer function. 

 
2. A constrained inverse of the inverse PID is formed 

after converting the inverse transfer function (in 
time domain) into a state-space model. 

 
In details the following transformations are to be done. 
Using a P-PID controller ( 0=α ) the starting transfer 
function is the following: 
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that defines an improper object. Let us take its proper 
inverse: 
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Based on the transfer function, the inverse can be given 
as a time-domain input-output model: 
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Let us transform the input-output model into the 
following input-output equivalent state-space model 

(using the ∫== e
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The state-space model given by Eq.(9-10) is a proper 
inverse of a standard P-PID. The new C-PID algorithm 
is constructed by forming a constrained inverse of this 
model. To form a constrained inverse, let us consider 
the general scheme (Fig.1) of Globally Linearizing 
Control (GLC) [6]. The idea is that an originally 
nonlinear object can be transformed into a linear one by 
a state feedback compensator. 

Linear 
controller

State feedback 
compensator Process Output map u y

x 

vsetpoint +

-
. .

 

Fig.1 Globally linearizing control structure 

The order of the linear input-output model, where the 
input is v , the output is , is equal to the relative order 
of the state-space model, Eq.(9-10). Based on the 
linearization technique, the constrained inverse is 
formed according to the scheme shown on Fig.2 [7]. 
The variables are interpreted in the following way: the 
input of the inverse is the setpoint ( ), its output is the 
manipulated variable ( ). Let the relative order of of 
the state-space model, Eq.(9-10) be 

y

w
u

r . This means that 
the input of the process (  is not constrained, u  is 
constrained) has a direct effect on the 

w
r -order 

derivative of the output ( ). The not-constrained 
control output ( v ) is determined in such a way that the 
relationship between the setpoint ( ) and the 
controlled variable ( ) is defined by an 

rr dtyd /

w
y r -order linear 

input-output model. The time constant of this linear 
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model should be determined according to the time 
constants of the object given by Eq.(9-10). Relatively 
small time constants result in aggressive interventions; 
the control output ( v ) is often reaches the physical 
constraints (in this case u takes its minimal or maximal 
value). With relatively large time constants the system 
capacity is not exploited resulting in slow control 
settlings. 

Constraint State feedback 
compensator 

u(t) 

x

v(t) setpoint 
w 

Process 
Eq. (9) 

Output map 
Eq. (10) 

y 

constrained 
control output

.

. 

 

Fig.2 Formation of constrained inverse 

To invert according to the given scheme, the the output 
of  Eq.(9-10) is differentiated: 
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Since the first order derivative contains the control 
output explicitly, the relative order of the inverse PID is 
one. Hence the linear system can be defined in the 
following way: 
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Substituting Eq.(11) in place of the derivative, the value 
of the required control output is obtained (output of the 
feedback compensator): 
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The output constraints are treated as follows: 
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where  is the physically allowed range of 
control output. 

],[ maxmin uuu∈

 
Summarizing the steps above, the scheme of the 
constrained PID (C-PID) algorithm can be constructed 
(see Fig.3). Initial values of the differential equations 
are set to zero error and to zero output difference. 
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Fig.3 Scheme of the C-PID controller 

Applying a similar reasoning or the limit value  
a C-PI algorithm can be elucidated too (see Fig.4). Here 
the relative order of the inverse is zero. 
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Fig.4 Scheme of the C-PI controller 

The non-constrained transfer functions can be easily 
constructed and the following results are obtained: 
 
C-PID: 
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C-PI: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅=− sT

KG
I

CPIC
11 , (16) 

 
It can be seen that C-PID not reaching the constraints is 
equivalent to a parallel PID with a filter, Eq. (5), while a 
C-PI to a normal PI controller. Hence it is clear that 
taking the constraints into account don’t makes the 
basic algorithms more complicated. This fact has a great 
importance for practical realizations. 

Design of Constrained PI(D) Algorithms 

To determine the parameters of a C-PID it is practical to 
describe the controlled system as a second order object. 
The scheme of the closed loop for the non-constrained 
case is shown in Fig.5. 
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Fig.5 Non-constrained closed loop 

This is equivalent to the closed loop given in Fig.6.  
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Fig.6 Equivalent loop 

 
The framed part shows well that the controller 
compensates the dynamics of the process if the 
controller parameters are chosen according to the 
followings: 
 

βαα /, == DI TT . (17) 
 
The filter parameter  should be selected at the 
possible smallest value ( ) allowed by the 
measurement noises, and then setting the time constant 
of the closed loop to , the controller gain can be 
given by the following expression: 
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In the direct synthesis method the time constant of the 
closed loop is selected as a half or fifth of the time 
constant of the process, therefore the gain can be 
estimates as: 
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The two parameters of a C-PI controller can be 
determined also according to the above reasoning. 

Testing of Constrained PI(D) Algorithms 

The C-PID algorithm was physicaly tested on an 
electrical water heating system installed in our Process 
Engineering laboratory. The P&I diagram of the system 
is shown on Fig.7; its technical specification is given in 
an earlier publication [8]. The temperature of the water 
( ) leaving the heater system is controlled by 
manipulating the heater performance ( u ). The 
flowrate of the water and its feed temperature are 
considered as non-measured disturbances. The dynamic 

 relationship is chosen as a second order input-

output model with dead-time that provides a structuraly 
adequate description. Open-loop experiments were 
conducted in order to determine the model parameters. 
The parameters were estimated by fitting to the 
measured data using Matlab (see Fig.8). 
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Fig.7 The laboratory system for testing 
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Fig.8 Identification of the process model 
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Fig.9 Simulation test of the P-PID controller 
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Fig.10 Simulation test of the anti wind-up PID controller Fig.12 Physical test of the P-PID controller 
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Fig.11 Simulation test of the C-PID controller Fig.13 Physical test of the anti wind-up PID controller 

The C-PID algorithm was compared to a standard P-
PID algorithm as well as to an anti wind-up PID 
algorithm used in an industrial PLC. The PID 
parameters are determined in each cases by the direct 
synthesis method based on the identified process model. 
In the simulation studies the mathematical model of the 
heater system was the process. The studies presents 
servo problems, however the load disturnbance 
compensation studies qualitatively showed similar 
results. Simulation tests are illustrated on Fig.9-11.  
Fig.9 shows well that in those time periods when the 
control output approaches its physical limits, significant 
overshoots can be observed after changing the setpoint. 
Overshoots can be considerably reduced by applying an 
anti wind-up compensator (see Fig.10). Fig.11 justifies 
that the C-PID algorithm completely eliminates the 
overshoot. 
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Fig.14 Physical test of the C-PID controller 

 
The same tests were conducted on the laboratory 
physical system. The results are given on Fig.12-14. 
The physical experiments illustrates well the effect of 
measurement noises, still the relation of the different 
methods is the same in case of the physical tests as it 
was shown in the simulation studies.  

Conclusions 

 
In industrial applications several versions of PID 
controllers can be found. Because of the physical 
constraints on the control output only those 
supplemented with anti reset wind-up compensators can 
follow setpoint changes without overshoots. Significant 
overshoots can involve safety risk especially in control 
of batch systems. The paper presents the so called C-
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PID algorithm which takes the physical constraints into 
account and provides settlings practically without 
overshoots. The algorithm does not make the standard 
PID algorithm more complex and it can be readily 
implemented in DCS’s. For the C-PID design, 
considering the potential capacity of PID algorithms, it 
is practical to describe the object as a second order 
process with dead-time. In case of systems with large 
dead-times the use of a Smith predictor is suggested that 
does not limit the applicability of C-PID. 
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