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In system identification a key step is to find a suitable model structure. The utilizations of prior knowledge and physical 
insight about the system are very important when selecting the model structure. In nonlinear black-box modeling no 
physical insight is available we have “only” observed inputs and outputs from the dynamical system. Association rule 
mining is one of the widely used data mining tools. It finds interesting association or correlation relationships among a 
large data set. The aim of this paper is to demonstrate that this data mining tool can be effectively applied for the data-
driven modeling and analysis of dynamical systems. The detected association rules can be interpreted as simple local 
input-output models of the modeled process. Hence, the analysis of the mined association rules (models) can provide 
useful information about the structure and the order of the model that can adequately describe the dynamical behavior of 
the process. In this paper a fuzzy association rule mining algorithm is introduced and a rule-base simplification algorithm 
is presented for the generation of a set of “rule-based models” that can be directly used as a qualitative model of the 
system. The general applicability of the developed tool is illustrated by the analysis of the input-output data of a 
continuously stirred styrene polymerization reactor. The detected association rules is used for the selection of the 
structure of a linear and nonlinear (neural network) models for this process and determine the most relevant process 
variables.  
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Introduction 

In process modeling the a priori knowledge, 
experimental data and experiments are crucial. The 
process of modeling from experimental data is known 
as system identification by Ljung [1]. The main steps of 
the system identification process are summarized well 
by Petrick and Wigdorowitz [2]:  
 

1. Design an experiment to obtain the physical 
process input/output experimental data sets 
pertinent to the model application. 

 
2. Examine the measured data. Remove trends 

and outliers. Apply filtering to remove 
measurement and process noise. 

 
3. Construct a set of candidate models based on 

information from the experimental data sets. 
This step is the model structure identification. 

 
4. Select a particular model from the set of 

candidate models in step 3 and estimate the 

model parameter values using the experimental 
data sets. 

 
5. Evaluate how good the model is, using an 

objective function. If the model is not 
satisfactory then repeat step 4 until all the 
candidate models have been evaluated. 

 
6. If a satisfactory model is still not obtained in 

step 5 then repeat the procedure either from 
step 1 or step 3, depending on the problem. 

 
A key step (step 3) is to find a suitable model structure 
which is capable of representing the dynamical behavior 
of the system. Therefore effective methods for structure 
selection are necessary.  
 
Consider the main aspects influencing the choice of a 
model structure: 
 

- What type of model is needed, nonlinear or 
linear, static or dynamic, distributed or 
lamped? 

 
*Correspondence concerning this article should be addressed to J. Abonyi (abonyij@fmt.vein.hu) 
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- How large must the model set be? This 
question includes the issue of expected model 
orders and types of nonlinearities. 

- How must the model be parameterized? This 
involves selecting a criterion to enable 
measuring the closeness of the model dynamic 
behavior to the physical process dynamic 
behavior as model parameters are varied.  

 
Large number of model structure selection methods has 
been introduced. For linear models, for example 
correlation analysis and multivariate structure selection 
techniques [3] such as principal component analysis 
(PCA) are proposed.  
Several information-theoretical criteria have been also 
proposed for the structure selection of linear dynamic 
input-output models. These methods are based on the 
minimization of a criterion function which involves the 
estimation of the one-step-prediction error plus some 
penalty function. The classical criteria are the Final 
Prediction Error (FPE), the Akaike Information 
Criterion (AIC) [4], the Minimum Description Length 
(MDL) criterion [5], the Schwarz criterion (BIC) [6] 
and the Hannan-Quinn Criteria (HIC) [7].  They only 
differ on the employed penalty function, but in [8] a 
new criterion function is introduced based on the 
decomposition of the variance of the innovations of the 
model in terms of their frequency components. The 
information criteria have been used in a context of 
regression models [9, 10], in distributed lag regression 
models [11], or in selection of the order an 
autoregressive and autoregressive moving average 
model [12, 13, 14]. In paper [15] the effects of the 
model selection problem, and in paper [16] the variable 
selection problem are studied. 
 
Determining the structure of linear systems is a rather 
straightforward task with these tools, but for nonlinear 
systems other structure selection methods are need. 
Aguirre and Billings [17] defined the concepts of term 
clusters and cluster coefficients and used in the context 
of system identification. This approach is used for the 
structure selection of polynomial models in the paper of 
Aguirre and Mendes [18]. In [19] an alternative solution 
is introduced by initially conducting a forward search 
through the many possible candidate model terms 
before performing an exhaustive all-subset model 
selection on the resulting model. A backward search 
approach based on orthogonal parameter estimation is 
also applied to structure selection [20, 21]. The paper 
[22] discusses several model structures selection 
methods and nonlinear input-output models that are 
suitable for implementation of feed-forward neural 
networks.  A systematic method for the selection of 
model order and time delay is presented in [23]. The 
method is applied to the neural network modeling of a 
multivariable chemical process rig. A deterministic 
suitability measure is introduced in [24] that quantifies 
the capably of a particular model class to capture the 
control relevant I/O-behavior of a nonlinear system. 
This suitability measure can be used for the purpose of 

model structure selection prior to the actual parameter 
identification. The fast bootstrap (FB) methodology to 
select the best model structure is presented in [25]. The 
methodology is applied to a regression task. In [26] a 
methodology for model structure selection based on a 
genetic algorithm was introduced and applied to non-
linear discrete-time dynamic systems. A modified 
genetic programming approach for model structure 
selection is introduced in [27]. It is combined with a 
classical technique for parameter estimation. Hong and 
Harris [28] introduced a learning algorithm for model 
subset selection which based on a new composite cost 
function that simultaneously optimizes the model 
approximation ability and model adequacy. In [29] a 
cost functional is evaluated for each identified model 
and the model with minimum cost is preferred. 
Suboptimal search strategies are adopted, forward and 
stepwise strategies are considered. 
 
We introduce in this paper a new data-driven structure 
selection method. The new method is based on fuzzy 
association rule mining and it is called MOSSFARM 
(Model Structure Selection by Fuzzy Association Rule 
Mining). Association rule mining finds interesting 
association or correlation relationships among a large 
data set. The problem of mining association rules was 
introduced over supermarket basket data in [30]. It 
helps to learn more about the buying habits of the 
customer. It gets information and answers for the 
market questions. But the market basket analysis is just 
one application of association rule mining this paper 
presents a new application area, the model structure 
selection.  
 
This paper is organized as follows. The first section 
introduces the system identification problem in 
nonlinear black box modeling.  Association rule mining 
theory is presented in the second section. In third 
section the fuzzy association rule mining is detailed. 
Our new method based on fuzzy association rule mining 
is introduced in the fourth section. The last fifth section 
illustrates how the MOSSFARM method select the most 
important model structures of a linear (least square 
method) and a non-linear (neural network) model of a 
styrene polymerization CSTR.  

System Identification in Nonlinear Black Box 
Modeling  

To be successful the entire modeling process should be 
given as much information about the system as is 
practical. The utilization of prior knowledge and 
physical insight about the system are very important, 
but in nonlinear black-box situation no physical insight 
is available, we have “only” observed inputs and 
outputs from the system. This paper concentrates on 
structure selection task in case of the black-box 
modeling. 
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In a system identification problem in case of black-box 
modeling [31] we have only input,  and output, 

data from the process (system), 
ku

ky
 
  (1) [ kk uuu ,,21 K=u ]
 
  (2) [ ]kk yyy ,,21 K=y
 
We are looking for a relationship between past 
observations and future outputs,  ],[ 11 −− kk yu
 
 , (3) kkkk efy += −− ),( 11 yu
 
where represents an error value, because will not 
be an exact function of past data. However, a goal must 
be that is small, so that we may think of 

function as a good prediction of .  

ke ky

ke
(.)f ky

 
Eq. 3 models general discrete time dynamic systems, 
but nonlinear static processes can be also represented by 
the following regression model: 
 
  (4) )( kk fy x=
  
The is a non-linear function, represents its input 
vector and denotes the k-th input-output 
data. The model regression vector  in a NARX 
(Non-linear Auto-Regressive models with eXegoneus 
Inputs) model contains the past values of the process 
outputs   and the process inputs  as regressors: 

(.)f kx
Nk ,,1K=

kx

ky ku
 

T
nkkkmkkkk uuuyyy ],,,,[ ,2,12,1 −−−−−−= KKx  (5) 

 
The m determines the number of past outputs and n 
represents the past inputs (model order). While the 
output of the regression model, is the one-step-ahead 
prediction of the process. This SISO form of the NARX 
models could be extended to the MIMO case. 

ky

 
Association Rule Mining 

 
One of the widely used research tasks in data mining is 
the discovery of frequent item sets and association 
rules. The problem originates in market basket analysis 
which aims at understanding the behavior of retail 
customers, or in other words, finding associations 
among the items purchased together. A famous example 
of an association rule in such a database is “Diapers => 
Beer”, i.e. young fathers being sent off to the store to 
buy diapers, reward themselves for their trouble. 
Because of the practical usefulness of association rule 
discovery, this approach can be applied in various 
research areas. 
 
How can we search association rules? The association 
rule mining is based on frequent item set searching. An 
item could be for example one product in the 

supermarket example, e.g. {beer}, and an item set is a 
set of items (products), e.g. {milk, beer, diapers}. The 
occurrences of an item (item sets) in a data set are called 
support.  The support value of an item (item set) could 
be seen as a probability value. The support gives in how 
many percent of the transactions is the item (are the 
items of an item set together)? Be the X an item set, the 
support value of X is calculated as follows: 
 

 nstransactio of
 with nstransactio of

#
#)()supp( XXPX ==  (6) 

 
An item x (or the item set X) is called frequent item 
(item set) if its support is higher than a given (user 
defined) threshold, namely the minimal support (σ ).  
 
See Table 1 which includes an example supermarket 
transaction data set, where each row represents a 
transaction. The first column contains the transaction 
number (Tid - transaction identifier) and in the second 
column the purchased products are listed in the 
transaction. 
 

Table 1 Example transaction data set  

Tid Items 
1 Bread, Milk 
2 Beer, Bread, Diaper, Eggs 
3 Beer, Coke, Diaper, Milk 
4 Beer, Bread, Diaper, Milk 

 
The frequent item set searching is a very easy task for 
this example data set, because the number of 
transactions is only four. If the minimum support is 
equal to 50 percent (σ = two occurrences), we can 
search all the frequent items and item sets, e.g. a 
frequent item is the {Milk} (with 75 % support), or a 
frequent item set is the {Diaper, Beer} (with 75 % 
support). But if we have a large data set (database) with 
many transactions and several items the frequent item 
set searching demands to use an efficient algorithm.  
 
A widely used frequent item set searching algorithm is 
the Apriori algorithm (was introduced in [30]). The 
name of algorithm is based on the fact that the Apriori 
uses prior knowledge of frequent item sets already 
determined. It is an iterative, breadth-first search 
algorithm, based on generating stepwise longer 
candidate item sets, and clever pruning of non-frequent 
item sets. Pruning takes advantage of the so-called 
apriori (or upward closure) property of frequent item 
sets: all subsets of a frequent item set must also be 
frequent. Each candidate generation step is followed by 
a counting step where the supports of candidates are 
checked and non-frequent ones deleted. Generation and 
counting alternate, until at some step all generated 
candidates turn out to be non-frequent. 
 
If we searched all the frequent item sets by the Apriori 
algorithm, we can generate association rules from them. 
An association rule has two parts: the rule antecedent 
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(denoted by X) and the rule consequent (denoted by Y), 
and both of them contain items. Therefore an 
association rule is represented by the form X => Y. 
From a frequent item set we can generate all the 
possible rules. Each item and sub item set could be 
placed in both parts of a rule. In the previous example, 
we can generate six rules from the frequent item sets 
{Beer, Bread, Diaper} (see the possible rules in Figure 
1). 
 

 
  

Fig.1 Example for association rule generating 

It is very important to know which association rules are 
well usable, namely which gives the most information 
about the data. Two basic measures are used to calculate 
how “important” an association rule. First one is the 
previously defined support measure. The support of an 
association rule is the support of the set of its items. For 
example, the support of the rule “{Bread, Diaper} => 
{Beer}” is equal to the support of the item set {Beer, 
Bread, Diaper}.  
 
The second one, the confidence measure of a rule is 
calculated as follows:  
 

 
)supp(

)supp()(
X

YXYXconf ∪
==>  (7) 

 
Because the confidence measure is a conditional 
probability (the quotient of the rule - and antecedent 
supports) it serves information about the relationship of 
the antecedent and consequent parts of a rule. A rule X 
=> Y is called important, or strong rule if its support 
and confidence are higher than the minimum support 
(σ ) and the minimum confidence thresholds ( γ ). The 
confidence is a basic rule interestingness measure, but 
many other measures are also can be used to determine 
the importance and ordering the mined rules (e.g. RI – 
Rule Interesting, Lift, Correlation, Jaccard, Piatetsky-
Shapiro, etc. measures). 
 
The number of the possible association rules is very 
high in case of an item set with many elements (e.g. if 
ten items are in an item set, the number of possible rules 
is ). Therefore it is well worth using the anti-
monotonic feature. For generating of the (n-1)-large 
rules we can use in the previous step selected frequent 
(n)-large rule. For example be the Z a frequent item set. 
The following two association rules are generated from 
Z: 1) X => Z \ X and 2) x => Z \ x, where . If the 
first rule does not fulfil the support criteria, the second 
rule is also can not to be frequent.   

2210 −

Xx∈

 

The importance of an association rule can be 
determined not only by objective way. The 
determination can be also subjective. The users can add 
the “right” form of the rules. Suppose that a user wants 
to search only rules with a distinguished item in 
consequent part. For example be this item a product-
family, books.  In this case, only the rules where a book 
is placed in the consequent part will be strong rules.  
 
To increase the usability of the association rule, fuzzy 
association rules are proposed. In the next section, the 
basic definitions of fuzzy association rule theory are 
presented. 
  

Fuzzy Association Rule Mining 
 
The fuzzy association rules can be discovered in also 
two steps as we showed in crisp case: 1) mining 
frequent item sets, and 2) generating fuzzy association 
rules from the discovered set of frequent item sets.  
 
A dataset (database) includes records (data rows) via 
the data fields (columns). The fields are frequent called 
as attributes.  
 
Because in fuzzy association rule theory the items are 
fuzzy sets, a partition method is necessary which 
transforms the crisp data set into fuzzy data set for all 
attributes. For the numerical attributes (as for example 
the temperature, pressure, etc.) of the data set, fuzzy 
sets can be defined with Gaussian, sigmoid, or 
piecewise linear fuzzy dichotomies. Therefore 
triangular, trapezoidal type of fuzzy sets (intervals) can 
be used for data partition.   
 
See the Figure 2 for an example, where the attributes  
and  are partitioned by two-two trapezoidal fuzzy 
sets.  

1z

2z

 

Fig.2 A fuzzy partition of data space ( , ) 1z 2z

Let  be a transformed (partitioned) 
fuzzy dataset of N tuples (data records ~ data points) 
with a set of attributes 

},,,{ 21 NtttD K=

},,,{ 21 qzzzΖ K=  and let  

be an arbitrary fuzzy interval (fuzzy set) associated with 
attribute  in Z where q denotes the number of 
attributes. From this point, we use the notation 

jic ,

iz

jii cz ,:  for an attribute-fuzzy interval pair, or simply 
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fuzzy item. An example could be youngAge : . For 
fuzzy item sets, we use expressions like CZ :  to 
denote an ordered set  of attributes (Ζ⊆Z  Ζ denotes 
the set of the all possible attributes) and a corresponding 
set of some fuzzy intervals, one per attribute, i.e C

]:::[: ,,, 2211 jiijiijii qq
czczczCZ ∪∪∪= K .  

In the literature, the fuzzy support value has been 
defined in different ways. Some researchers suggest the 
minimum operator as in fuzzy intersection, others prefer 
the product operator. They can be defined formally as 
follows: value  for attribute , then the fuzzy 

support of 

)( ik zt iz
2: CZ  with respect to D is defined as 

   
N

zt
CZFS

N
k ikCZcz jii

∑ Λ
=

= ∈1 :: )(
):( ,  (8) 

 
where the is an operator set. In this 
paper we prefer the product form. A fuzzy support 
reflects how the record of the identification data set 
support the item set. A fuzzy item set 

},{min, KΠ=Λ

CZ :  is called 
frequent if its fuzzy support value is higher than or 
equal to a user-defined minimum support (σ ). The 
following example illustrates the calculation of the 
fuzzy support value. Let 

 ]high : Income medium : Balance[: U=AX  be a 
fuzzy item set and the example dataset is shown in 
Table 2.  

 
Table 2 Example database containing memberships   

 

 
 

 
 
 

 
The fuzzy support of AX :  is calculated as follows: 
 

0.3367=
⋅+⋅+⋅

=
3

7.07.04.08.04.05.0):( AXFS  

 
Since the rules are generated from the frequent item 
sets, the generation of fuzzy association rules becomes 
relatively straightforward. More precisely, each 
frequent item set CZ :  is divided into the consequent 

BY :  and antecedent AX : , where 
 and . With the use 

of this notation a fuzzy association rule can be 
represented in the form of  

CAXZYZX ⊂−=⊂ ,, ACB −=

 
  If X is A, then Y is B,  (9) 
 
or in more compact form, 
 

 BYAX :: ⇒ .  (10) 
 

A fuzzy association rule is considered strong if its 
support and confidence exceeds the given minimum 
support (σ ) and minimum confidence ( γ ). Since the 
rules are generated from frequent item sets, they satisfy 
the minimum support automatically. The fuzzy 
confidence of a fuzzy association rule BYAX :: ⇒  
is defined as  
 

):(
)::(

)::(
AXFS

BYAXFS
BYAXFC

⇒
=⇒   (11) 

 
and it is a conditional probability of the parts of the 
rule: ( )AXBYP :|: . 
 
Fuzzy association rules mined using the above fuzzy 
support-confidence framework are useful for many 
applications. However, a rule might be identified as 
interesting when, in fact, the occurrence AX :  does 
not imply the occurrence of BY : . The occurrence of a 
fuzzy item set AX :  is independent of the item set 

BY :  if  B), : FS(Y A) : FS(X  C) : FS(Z ⋅=  otherwise 
item sets AX :  and BY :  are dependent and 
correlated as events. The correlation between the 
occurrence of AX : and BY :  can be measured by 
computing the interestingness of a given rule: 
 

( )
):():(

):(:,:
BYFSAXFS

CZFSBYAXFcorr
⋅

=  (12) 
Balance: 

med. 
Credit: 

high 
Income: 

high 
0.5 0.6 0.4 
0.8 0.9 0.4 
0.7 0.8 0.7 

 
If the resulting value of Eq. 12 is less than one, the 
occurrence of AX :  is negatively correlated with the 
occurrence of BY : . If the resulting value is greater 
than one, AX :  and  BY :  are positively correlated. 
It means the occurrence of one implies the other. If the 
resulting value is near to one, then AX :  and BY :  
are independent and there is no correlation between 
them. 
 
After the review of basics of association rule mining, 
the next section presents how use the fuzzy association 
rules for model structure selection.  
 

MOSSFARM - Model Structure Selection by Fuzzy 
Association Rule Mining 

Since in the previous section all of the necessary 
definitions and methods to mine fuzzy association rules 
were considered, this section will focus on the main 
steps of our method that are needed to solve the studied 
model structure (order) selection problem in case of 
NARX model.  
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Suppose that we have only measured input-output data 
from a SISO process. In a NARX model of the process, 
from this I/O data set we can construct a regression 
vector from each  input-output data pairs by 
the following way, similar for Eq. 5:  

Nk ,,1K=

 
T

nkkkmkkkk uuuyyy ],,,,[ ,2,12,1 −−−−−−= KKx  
 
where the past values of the process outputs   and 
the process inputs  are the regressors. The number of 
past inputs (n) and past outputs (m) are often referred to 
as model order.  

ky

ku

 
The question is how to select the right model order? An 
answer could be our method, the MOSSFARM. 
 
The method consists of the following five steps: 
 

1) Generate a fuzzy database 
2) Mine frequent fuzzy item sets 
3) Generate fuzzy association rules 
4) Prune the fuzzy rule base 
5) Aggregate the mined rules, select the model 

structure 
 
Step 1) Observed (measured) input-output data are 
general crisp values. In the first step the “attributes” 
(regressors in the regression vector) need to partition to 
get fuzzy valued data set. The fuzzy Gustafson-Kessel 
(GK) [33] clustering algorithm partitions the initial data 
on every attribute (dimension of data ~ all the candidate 
regressors). The resulted membership functions are 
transformed into trapezoidal membership functions (see 
an example in Fig. 4 where on two attributes are four 
and three fuzzy sets, respectively). 

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0

1 1  

Fig.4 Trapezoidal membership functions 

Step 2) The resulted fuzzy data set includes the 
membership function values of each data points on each 
attributes, and the index of fuzzy set which give the 
highest membership value for the data point in a given 
attribute. These indices can be the items and the set of 
them are the item sets.  The frequent item set searching 
is based on a fuzzy implementation of the Apriori 
algorithm. The fuzzy support values are calculated as 
the Eq. 8 shows.  
 
Step 3) The mined frequent item sets are the base of 
fuzzy rule generation step. Every fuzzy rules are 
generated, but only the rules with high support (FS > 

σ ) and confidence (FC > γ ) values are the relevant 
rules. The fuzzy support and confidence values are 
calculated as the Eq. 8 and 11 show. The interesting 
value of the rules are determined by the correlation 
factor (Fcorr, calculated by Eq.12). 
 
Step 4) The advantage of the application of the 
correlation measure for the analysis of the quality of the 
rules is that it is upward closed. Based on this, a rule 
based pruning algorithm has been developed that 
removes the unnecessarily complex rules. Such rules 
contain input variables that do not significantly improve 
the correlation of rules. 
 
Step 5) We have to analyze the mined association rules 
to determine model structures.  The rules where the first 
indices of the fuzzy sets are equal in the antecedent 
parts, give identical model structures. Therefore it is 
necessary to aggregate the support, the confidence, and 
the correlation measures of these individual rules. After 
the aggregation the given model structures must be 
ordered by the correlation (calculated by Eq. 12) 
measure (or by other rule interesting measures) and 
accordingly the first structures will be the most 
interesting structures of the models.  
 
In the next section an application study is showed to 
illustrate how this method determines the structures of 
the models for a dynamic system and selects the most 
relevant process variables. 
 
 

Application Study 

Model of styrene polymerization CSTR  

The data-driven modeling of styrene polymerization in 
a continuously stirred tank reactor is considered as a 
case study to demonstrate the applicability of the 
proposed method. The schematic diagram of the 
polymerization process is shown in Fig. 5. 
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Fig.5 Scheme of the styrene polymerization CSTR  
with a cooling jacket  

On Figure 5, , , ,  denote the monomer 

flowrate, the monomer feed concentration, the feed 
mQ mfC fT mC
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temperature, and the monomer concentration, 
respectively. The solvent flowrate is represented by , 
while , ,  are the initiator flowrate, the 

initiator feed concentration, and the concentration of the 
initiator in the reactor,  respectively. ,   and  

are the coolant feed temperature, the coolant flowrate, 
and the coolant temperature. The total flowrate is 
denoted by  and T  is the reactor temperature. The 
initiator is azobisisobutyroitrile (AIBN) dissolved in 
benzene, while the monomer is styrene and the solvent 
is benzene.  

sQ

iQ ifC iC

cfT cQ cT

TQ

For the simulation of this system the model of Hidalgo 
and Brosilow [33] is applied:   
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where  represents the concentration of the growing 

polymer. 
gpC

 
The dimensionless model and its nominal parameter 
values are detailed in [34]. The dynamical behavior of 
this dimensionless model is illustrated in Figure 6, 
where the coolant flowrate (Qc) is considered as an 
input variable. The steady-state input-output 
relationship of Qc and the reactor temperature (T) 
confirms the nonlinear behaviour of the model (see 
Figure 7).  
 
Suppose we have only input output simulated data taken 
from the above CSTR model, and we want to identify a 
linear ARX or a neural network based NARX model 
with some model structure. To determine (select) the 
structure of these models the proposed fuzzy association 
rule based method will be followed in the next session. 
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Fig.6 Dynamical behavior of the dimensionless model  
of the styrene polymerization reactor 
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Fig.7 Steady-state input-output relationship of the coolant 
flowrate and the reactor temperature  

 
Model structure selection by MOSSFARM 

  
A SISO NARX model of the previous system is 
considered where the output of model (y) is the reactor 
temperature, and the input (u) is the coolant flowrate. 
The maximal number of lagged inputs and outputs is 
four-four, therefore the more complex model is: 
 
 ]),,,([ 4,,14,,11 −−−−+ = kkkkkkk uuuyyyfy KK   (18) 
If the original (the full, see Eq. 18) model structure is 
used for a linear and a neural network (NN) based 
model, the mean square error (MSE) values are 0.00047 
and 0.00008, respectively. In the linear model Least 
Square Method is used. At the NN model the number of 
regressors in the structure is used for set the number of 
neurons in input, hidden and output layers (e.g. for the 
structure [yk, yk-1, yk-2, yk-3, uk] input: 5, output: 1, 
hidden: 3). The applied learning method was the back-
propagation method. The structures with highest 
correlation factor (selected by MOSSFARM with σ  =1 
%, γ  = 95 %) are listed in Table 3. 
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Table 3 The selected model structures 

# Structure FS FC Fcorr 

1. yk, yk-1,  
yk-2, yk-3, uk

8.1 96.3 822 

2. yk, yk-1, yk-3, 
uk

8.2 95.9 819 

3. yk, yk-2, yk-3, 
uk

8.2 95.7 817 

4. yk, yk-1, yk-2, 
yk-3, uk-1

8.7 95.3 814 

5. yk, yk-3, uk, 
uk-2, uk-3

8.3 95 811 

 
Table 4 shows the selected model structures for several 
minimal support and confidence conditions. The 
selected model structures (e.g. in Table 3) can be used 
to identify the linear and the NN model.  
 

Table 4 The selected model structures for several searching 
condition (support, confidence) 

σ  γ   Best structure 

1 95 yk, yk-1, yk-2, yk-3, uk

1 80 yk-3, uk

1 70 yk, yk-1, yk-3, uk, uk-2

1 60 yk, yk-1, yk-2, yk-3, uk, uk-1

1 50 yk-1, yk-3 uk, uk-1, uk-2, uk-3

5 50 yk, yk-3, uk

8 60 yk, yk-3, uk

3 70 yk, yk-3, uk

 
The results are showed in Figures 8-11. We can see that 
the NN model gives lower MSE values in all cases. The 
MSE values are lower at the using of first structures as 
the other structures in both model (linear and NN). The 
resulted MSE values are higher than the original (the 
full) structures, but the differences are not considerable 
and these structures are smaller than the original model 
structure. Therefore MOSSFARM can be an efficient 
method for determining the model structure for input-
output models. 
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Fig.8 The MSE values for the linear model with the selected 
model structures 
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Fig.9 The MSE values for the NN model with the selected 
model structures 
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.10 The linear model output values - ym(k) - in function of the 

simulated output values - y(k) - 
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Fig.11 The NN model output values - ym(k) - in function of 

the simulated output values - y(k) - 

Table 5 The effects of the rule pruning step 

 Original r. base Pruned r. base 

First 
structure yk, uk, uk-1, uk-2, uk-3 yk, yk-3,uk

Rules 714 27 

Conditions 3157 77 

MSE of 
Lin. 0.001 0.0008025 

MSE of 
Lin. free 0.0352 0.0141 

MSE of 
NN 0.00039197 0.00030913 

MSE of 
NN free 0.03 0.0093 

 
Table 5 shows the results of the rule base complexity 
analysis. The searching conditions were followings:σ  
= 3 %, γ  = 90 % for the original simulated (with the 
regressor in Eq. 18) data. The rule pruning step give 
smaller, but well usable model structures both in linear 
and NN models. The pruned rule base has 97.56 percent 
less complexity than the original rule base and lower 
MSE values.   
 
If the structures are ordered by the number of 
aggregated rules, the first structures are the yk, yk-1, yk-2, 
uk-1, uk-2 (with the original rule base), and the yk, yk-3,uk 
(with pruned rule base, all other searching parameters 
are equal as was in case of Table 5). For the structure 
yk, yk-1, yk-2, uk-1, uk-2 the MSE values of the linear and 
the NN model in the case of free running are 0.0223, 
0.0192 respectively (the results are depicted in Fig. 12 
and Fig. 13). For structure yk, yk-3,uk  lower MSE values 
are resulted: 0.0141 at free running of linear model and 
0.0174  at free running of NN model. 
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Fig.12 Results of the free run of linear model for   
yk, yk-1, yk-2, uk-1, uk-2 structure 
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Fig
.13 Results of the free run of neural model  

yk, yk-1, yk-2, uk-1, uk-2 structure 

 
Feature (variable) selection by MOSSFARM 

 
The proposed method also can be used for select the 
most relevant variable which determine the output 
variable. The four state dimensionless form of the 
model Hidalgo and Brosilow could be extended with 
the dimensionless moment equations. A new dataset is 
based on the simulation of this extended dimensionless 
model with six state variables. The dimensionless 
number-average molecular weight (NAMW) is the ratio 
of the last two state variables of the model [35]. The 
relevant variables which determine the value of the 
NAMW are selected by the MOSSFARM method. The 
new initial model structure is: 
 
 ]),([ 7,,211 kkkk xxxfy K=+   (19) 
 
where the dimensionless variables are the following: y : 
model output NAMW, x1 : the initiator concentration, x2 
: monomer concentration,  x3 : reactor temperature,    x4 : 
jacket temperature,  x5 : the first variable in the moment 
equations,  x6 : the second variable in the moment 
equations and x7 : cooling jacket flowrate. If the 
searching conditions were the followings: number of 
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partitions (~ clusters) for the output variable: 5, the 
number of partitions in the regressor variables: 3,  σ  = 
10 %,  γ  = 50 %, the MOSSFARM selects the structure 
x1k, x3k (“aggregated” from one rule) as first (ordered by 
the correlation). This result says that the initiator 
concentration and the reactor temperature determine the 
number-average molecular weight. If the ordering is 
based on the number of aggregated rules, the first 
selected structure is the x6k, x7k. (aggregated from two 
rules). The results are summarized in Table 6. 
 

Table 6 Linear and NN model for estimate number-average 
molecular weight 

 Ordering by 
corralation  

Ordering by 
rule number 

First 
structure x1k, x3k x6k, x7k

MSE of 
Lin. 0.0103 0.0049 

MSE of 
Lin. free 0.0106 0.576 

MSE of 
NN 0.0001723 0.000416 

MSE of 
NN free 0.2080 0.576 

 
 

Conclusions 
 
 
This paper showed a new model-free, fuzzy association 
rule mining based method for model structure selection 
for input-output data-driven models. The results show 
that the developed tool provides an efficient method for 
determining the model structure of both linear and 
neural network based input-output models. Moreover 
this method is also can be used to selection of the most 
relevant process variables (feature selection problem). 
The proposed approach has been implemented as a 
MATLAB program called MOSSFARM (Model 
Structures Selection by Association Rules Mining), it 
will be free available from: 
 
www.fmt.vein.hu/ softcomp.  
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