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The four parameter hyperbolic tangent distribution family is used for charac-
terizing the size distributions of vitamin C erystals. The crystals were obtained in
batch experiments in a laboratory scale agitated erystallizer under different ex-
perimental conditions. It is demonstrated by the results of matching that hyperbolic
tangent distribution functions describe the experimental data welk thus the crystal-
lization process of vitamin C can satisfactorily be characterized by means of these

distribution functions.

Infroduction

Of the primary quantifiable properties of crystals, crystal
size and their distribution are probably the most impor-
tant. Much attention was paid to the description of crys-
tal size distribution (CSD)[1-5], and a varety of
probability distributions can be used for this purpose.

The meost widely used log-normal, gamma and
Rosin-Rammler distributions, however, involve only
two independent parameters, thus their matching to ex-
perimental crystal size distriibution data, although it is
not too difficull, sometimes leads to unsatisfactory
results, especially in process desiga of solids processing
systems [6].

Distributions having more parameters for fitting, al-
though they need more computational efforts, usually
provide a better mechanism for summarizing experimen-
tal data. Such distributions are either the three- and four-
parameter JOHNSON {7] and PraRSON [8] distributions,
or the recently developed hyperbolic tangent distribution
family involving four free parameters [9]. It appeared
that the hyperbolic tangent distribution functions can be
used for describing pariiculate systems in a genetal man-
ner since by means of them both, the particle size dis-

tributions by number and those by surface or by mass
may be well approximated. In consequence, the hyper-
bolic tangent distribution functions were applied for
describing such processes as grammlation [10], grinding
[11], or crystallization from solutions [12], and a family
of methods for evaluation, analysis and design of fluid-
solid disperse systems was developed on the basis of
this distribution law [6].

The aim of the work is to present further data con-
ceming the applicability of the hyperbolic tangent dis-
tribntion  funciions for describing crystal  size
distributions. It is shown how crystal populations of
vitamin C, obtained nnder different experimental condi-
tions, can be characterized by means of distribotion
functions of this type.

Experimental

A series of batch experiments was performed in a 0.8
titre volume, mechanically agitated double jacketed ves-
sel, schematically shown in Fig. I, All experiments were
carried out with L-ascorbic acid {vitamin C)-water sys-
temn which has a great application field in the chemical,
pharmacentical, cosmetic and food industry.
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The Hyperbolic Tangent Distribution Function

The distribution function of the hyperbolic tangent dis-
tribution has the form

0 if a+bL<0 o)

RLy={"
{tanhm(a+ BL)", if a+bL>0

where m > 0, n > 0, —0<a<e and b > 0 are inde-
pendent parameters of the distribution, and L > 0
denotes some characteristic size of the particles.

Since F is continuous, the density function f also
exists and takes the form:

c5
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Fig.2 Cooling curves of batch crystallization experiments

Temperature control within the crystallizer was
achieved by pumping water throngh the jacket at the
maximum possible rate according to the given cooling
programme. Different cooling programmes were applied
without seed crystals, applying also ultrasonic irradia-
tion at constant frequency 20 kHz and 1-10™* - 1.8-10"
/s intensities, as it was described by BoDoOR et al. [13]
in detail, generating in this way a great variety of dif-
ferent experimental conditions.

The cooling programmes always were started at
temperature 45 °C as it is illustrated in Fig.2 since here
the solution was saturated. Data on solubility of vitamin
C have glso been presented elsewhere [13].

The final product size distribution was measured by
a MALVERN Series 2600 laser-analyser in the crystal
suspension. The size disiribution data produced by the
instrument were elaborated by a computer prograrame
fitting hyperbolic tangent distribution functions to the
experimental data.

dRL) oo
dL _f(L) -
o, if a+BL<O
2
\mnb(a+ by tanh™ g+ BL)" -
- (1 - tanh’(a+ bL)", if g+bL>0
It is easy to show [14] that
g, fmn>1,
imfi)=11, if mn=1, 3

L% W’ifmn<1,

thus the hyperbolic tangent distribution function,
depending on the values of parameters, may represent
different types of probability distributions,

The hyperbolic tangent distribution function has
some advantageous properties:
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Fig.3 The algorithm of fitting the hyperbolic tangent
distribution funictions to measurement data

e its four parameters allow fc;r good matching to ex- -

perimental crystal size distribution data;
» with inreasing L, it approaches asymptotically to
the value of 1 very quickly [9], thus

1) the moments can be computed numerical-
ly conveniently, which appears to be im-
portant in case of estimating the
parameters by the moments method,

2) truncated distributions (in essence, all dis-
tributions in practice are truncated) are
shown to be approximated very well by
means of hyperbolic tangent functions;

e some other distribution functions, often used for
describing crystal size distributions (lognormal,
Rosin-Rammler, gamma) can also be ap-
proximated well by hyperbolic tangent functions
{91, providing in this way a convenient method for
comparing measurement data described in different
ways.

Evaluation of CSD Measurements

Based on the observation that parameters m, n, aand b
can be divided into two groups, a two-level method of
least squares was developed for fitting the hyperbolic
tangent distribution function to experimental particle
size distribution data.

The method is based on the minimization of the ob-
jective function

r 2
=y |2 i 4
J%tL 5 ] @

where 5 denotes the measured size fraction at crystal
size L;, with respect to parameters m, n, g and b. This is
performed in two steps:
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where the inner minimization is inherently a nonlinear
problem, while the outer one can be reduced into linear
regression. The algorithm is summarized in Fig.3.

For minimization with respect to parameters m and
n, an algorithm without calculating the derivates of the
objective function is used. The local minima are sought
on a grid of variable size in a given region of the
parameters from which the global minimum is selected
in each iteration step. At this partial minimum, denoted
by Jmn, the parameters @ and b are fitted to the data by
using linear regression, based on the solution of the
transformed problem

E
minimum(pg) = ["\/ arctanh "5, — (a+ bLi)] .

—oogagso

b0 .

i

which is equivalent to the solution of the set of linear al-
gebraic equations

aZ+bZLi=2n\[arctanthE{, D
aX, L+bY =Y L™arctash ™5, . (8)

The iteration process is stopped if the difference be-
tween the values of minima of two successive steps be-
comes smaller than the given error tolerance.

Results and Discussion

The evaluated mesurements are sammarized in Table 1,
where the cooling curves are as presented in Fig.2. In
case of experiments with ultrasonic irradiation (njir)
different intensities and time-intervals of radiation were
applied according to the following notation:

wimr: a- intensity:l—10'4 mis, fime=5&;
wire: b- intensity=1-10% mfs,  time=10s;
wim: ¢- imensity=1.8-li)’4 mfs, fime=35s;
wim.: d-iotensity=1.8-10% m/s, time=10s;
wim: e-intensity=1.810" /s, time=5¢;
wim.: f-intensity=1.8-10" m/s, time=10s.
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Table I Data of measurements used for illustrating the fitting of hyperbolic tangent distribution function to CSD

Cooling curve Process Agitation r.p.m S Estimated param etgrs b
m n a
Figl-C1 nonlin.; wir.mo 250 134 0.5 3.8 0.01 0.007
Fig.1-C2 Iinear; ujiir..no 4560 133 0.7 3.9 021 0.005
Fig.1-C3 hinear; v.irr. no 100 2.00 a2 37 008 0007
Figi-C4 linear; wirr.mo 450 1.66 15 38 049 0.004
_ Figl-C5 nonlin.; u.ir.no 450 1.10 39 1O 0.24 0.006
Fig2 - Ul nonfin.; wim.: a 100 1.50 20 05 059 0012
Fig2-U2 nonlin.; wirr.: b 100 1.50 23 12 0.11 0.004
Fig2-uU3 nonlin.; wirr.: ¢ 100 1.5¢ 3.7 10 419 0019
Fg2-U4 nonlin.; wimr.: d 100 1.50 37 10 019 0018
Fig.2 - U5 nonfin.; uirr.: e 50 1.50 3.9 09 0.24 0.010
Fig2-U6 nontin.; wirr.: £ 100 150 26 Q.7 442 0023
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Fig.4 Fit of the hyperbolic tangent distribution functions to CSD data of runs referred in Table F

In Table 1, linear means linear cooling rates, while
in ease of notion nonfin. the programmed cooling rates
were noplinear (convex - Cl, concave -Ul, general - C5)
as it is shown i Fig.2,

‘The size measurernent data with the hyperbolic tan-
gent distribution fanctions obtained in the fitting process
e presented in Fig# for experiments without nltrasonic
irradiation, and In Fig.5 for experiments in which
ultrasonic iadiation of suspension was applied The
best valoes of the parameters are presented in Toble 1,
{00,

The measurement data are described by the result-
ing curves acceptably illustrating well the applicability
of the hyperbolic tangent distribution fanctions for char-
acterizing erystal size distributions of vitamin C.

We should note here, however, that the results of
fisting appeared to be satisfactory only for unimodat dis-
tributions. In case of multimodal distributions, measored
in batch crystallizers vnder certain circumstances, only
the fitting of composite hyperbolic tangent distdbution
functions would lead to acceptable resulis,
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Fig.5 Fitof the hyperbolic tangent distribution functions to CSD data of runs referred in Table 1

Conclusions

The hyperbolic tangent distribution appears to be well
applicable for characterizing size distributions of crys-
tals of vitamin C, obtained by crystallization from
aqeous solutions, thus similar seis of data of crystals of
this important chemical species can be analyzed in the
automated data analysis based on the method of distribu-
fion Tunctions of this type.

A method of matching the distribution functions o
experimental data has been presentied which can be used
for evaluating the guality of crystalline products of crys-
tallization processes, as well as for comparing results
obtained by different crystal sive measurement methods.

The four parameters of the hyperbolic tangent dis-
tribution family can be corresponded to the first four or-
dinary momenis of the crysial size distributions
equivalently, thus these two methods seem to be well
suited to each other.

Because of the good fitting results obtained in this
work,the hyperbolic tangent distribution functions are
expected to be suitable also for characterizing crystal-
lization processes by themselves.
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SYMBOLS

a parameter of the  Thyperbolic tangent
distribution family

b parameter of the  Thyperbolic fangent
distribution family

f hyperbolic tangent density function

F hyperbolic tangent distribution function

J objective function of parameter fitting

Jon minimum of J with respect to parameters m
and 1

L characteristic size of crystals

L value of the i-th size interval

m parameter of the hyperbolic tangent
distribution family

n parameter of the Thyperbolic tangemt
distribution family

5 supersatiration ratio

5 size fraction of the i-th size interval
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