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Mathematical models and iterative methods are developed for simulating alterna-
tive mulficomponent distillation processes with parallel flow streams (vapour and
liquid sfreams) in order to study the variation of separating effects. In the parastil-
lation process, the uprising vapour stream is divided into two equal parts at the
bottom of the distillation column and the whole amount of the falling liguid is
stage-by-stage alternatively contacted with both parts of the vapour. In the metas-
tillation process, the falling liquid is separated into two equal parts at the top of the
column, while the whole amount of the uprising vapour is stage-by-stage alterna-
tively contacted with both liquids flows (Fig.I). According to our previous study
[6], the parastillation process resulis in smaller column with less investment or
operating cost than distillation. In this study the metastillation process is inves-
tigated and it is found that the required theoretical number of stages increases
roughly by 50 %. However, the following liquid and vapour pafterns on the trays,
as specified by Lewis [5], can change significantly the stage efficiency as well as
the economics of the alternative processes.

Introduction

It can be proved that under certain circumstances the
separation efficiency by counter current processes can be
increased by dividing a flowing phase into several
parallel streams. HEUCKE [2] determined for two-com-
ponent mixtures the extent of efficiency increase by
simple graphically representation. A mass transfer ap-
paratus was developed by JENKINS [3.4] and later
referred to as parastillation by CANFIELD [1]. With ex-
perimental analyses and non-rigorous computer simula-
tion CANFIELD pointed out that parastiflation process
under total reflux condition provides roughly 33 %
greater efficiency than distillation. MEszAros and

FonYO [6] developed a mathematical model and an
jterative procedure for simulating any kind of multi-
stage, multicomponent parastillation with arbitrary struc-
tures in order to judge the effectiveness of these novel
devices at conditions other than total reflux. Compared
to conventional distillation the resnlts show significant
energy or colurmn height reduction assuming identical
tray efficiency. However, the adverse impact on the tray
efficiency is also indicated owing to the larger lig-
uid/vapour ratio, which results in significantly smaller
tray efficiency and thus parastillation process loses a lot
form its attractiveness,

The objective of this study is to extend the inves-
tigation to the so called metastiliation process, where in-
stead of the uprising vapour streamn the downwards
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Fig.1 Scheme of distillation with parallel streams
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Fig.2 Metastillation colamn model for simulation

flowing Hquid is divided into two, practically equal parts
and the whole amount of uprising vapour is stage-by-
stage alteratively contacted with both liquid flows.
First, the metastillation process is modelied and inves-
tigated by use of the eguilibriumn stage concept. After
this, the alteration of the stage efficiencies of the alterna-
tive separation provesses is elaborated and finally the
necessary total-tray-areas are also compared.

Mathematical Model

A new iterative method is developed for solving
problems of multicomponent metastillation. This simula-
tion method employs the tridiagonal matrix algorithm,
which was introduced by WANG and HENKE [9] for the
simulation of distillation colurnns. For the convenience
of deriving the mathematical model of metastillation, a
hypothetical column is shown in Fig.2. This column has
n equilibrium stages including a condenser (partial or
total) and a reboiler as well. The stages are numbered
from the top to bottom, i.e. the condenser is the first and
the reboiler is the nth stage. Except for the the reboiler
and the condenser at any stage side cooler/heater can be
installed furthermore side streams (product/feed) are al-
lowed.

In a rigorous equilibrium stage calculation four sets
of equations must be satisfied. They are the material
balance equations (M), the equilibrium equations (&),
the summation equations of mole fractions ($) and the
heat balance equations (H). These equations for metastil-
fation column are summarized i Table 1. In the case of
a metastillation column the situation is different to a
common distillation column, because the internal liquid
flow is divided into two practically equal parts. Each
pazt flows into alternate stages.

The reftux flow rate is split and simultaneously fed
into the first two stages. It is also advisable in the case of
metastillation o divide the feed into two equal parts and
introduce them into two consecutive stages to avoid the
asymmetrical increase of the internal liquid flows.

Hustrative Examples

I order to demonstrate the effectiveness of the com-
puter model aud metastillation process three separation



Table 1 Model equations for metastillation column
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Table 2 Separation problem specifications for simulation

Example No. Separated mixture Number of Distillate Reflux ratio Pressure, bar
Component kmol/hr theor. stages kmol/hr
1. i-butane 75.0 198.6 1.3 7.0
n-butane 150.5
i-pentane 254
n-pentane 88
n-hexane 1.8
2. benzene 1000 100.0 2.0 1.0
toluene 100.0
3. i-butane 20 2.1 1.5 3.0
benzene 220
toluene 33.0
e-benzene 43.0
0 0
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Fig.4 Composition profiles in metastillation column for
Example 1

examples are selected (Zable 2). For the sake of com-
parison all the three processes are modelled in example 1
with identical, 20 theoretical stages. The composition
profiles and the temperatare profiles along the column
height are plotted in Figs.3-6 and the results are sum-
warized in Table 3 as well. Form Figs.3-5 and Table 3 it
is obvious that with the same operating parameters
(reflux ration, number of theoretical stages, pressure)
identical separation effect cannot be reached with the
three different separation processes. In order to obtain
the same purity according to our experience at parastilla-
tion the number of theoretical stages has to be increased
by roughly 40 % [6] and in the case of metastiliation by
50 % which is in agreement with HEUCKE [2]. In Fig.6
the different temperature profiles are plotted. Due fo the
different pressure drops and degrees of separation the
profiles are also different.

In examples 2 and 3 at metastillation the number of
theoretical stages are increased by 50 % and it can be
seen from Table 4 that the distillate purity is slightly bet-
ter in the case of metastillation.
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Table 3 Simulation data for Example 1 with identical numbers of theoretical stages

Distillation Parastillation Metastillation
Number of theoretical stages 20 20 20
Reflux ratio 13 13 13
Top pressure, bar 70 7.0 70
Condenser heat load, kW 2802 2809 2808
Reboiler heat load, kW 2740 2251 2676
Distillate, kmol/hr
i-butane 74.9 74.5 73.2
n-butane 122.7 122.5 1223
i-pentane 10 1.6 29
n-pentane 0.0 0.0 02
Top temperature, °C 38.0 38.0 38.0
Bottom temperature, °C 854 79.3 76.0
Liquid flowrate, kg/ hr 17850 17850 9000
Vapour flowrate, kg/hr 30970 16480 29880
Column diameter, mm 1210 950 980
Table 4 Simulation data for Examples 2 and 3
Distillation Metastillation
Example 2 Example 3 Example 2 Example 3
Number of theoretical stages 10 10 15 15
Condenser heat load, kW 3108 31 3124 31
Reboiler heat load, kW 3324 340 3293 302
Distillate, kmol/br
i-butane — 1.997 — 1.983
benzene 942 0.084 94.8 0.059
toluene 58 0.017 52 0.015
e-benzene — 0.004 — 0.002
Top temperature, °C 38.0 35.0 38.0 35.0
Bottom temperature, °C 1125 155.4 112.8 1554
Liquid flowrate, kg/hr 19490 12400 9530 6000
Vapour flowrate, kg/hr 27110 2810 25020 1770
Column diameter, m 1620 540 1540 400
° d—l b 1] Results and Analysis
g : ‘s\ The effectiveness of the conventional and alfemative
g 1 | ¥ separation processes is compared in the three separation
%] \3\ 1 examples. HEUCKE already studied these processes for
% . LU S binary mixture by using the McCabe-Thiele repre-
§ 1 etastilla -i"‘:\:\\.\« 9 sentation [2]. Since in the case of metastillation the re-
£ 20 ] N quired number of theoretical stages is roughly 50 %
] Pargsuion  grater than at distillation:
25 -

30 35 40 43 50 55 60 85 70 VH B 8% W v

Stage temperature, T

Fig.6 Temperature profiles for Example 1

i. In such operating range where the liguid flowrate
determines the column diameter metastillation
could provide smaller diameter because the lig-
vid/vapour ratio is about 50 % of that of the dis-
tillation.
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2. According to LEWIS the tray efficiency greatly
depends on the tray’s flow pattern. In respect of
flowing direction the parastillation serves the
most advantageous flow patiern since the liquid
on the trays in a given vapour side of the column
always flows in the same direction (see Case Il in
Fig.7)

In the following first the theoretical stage require-
ments and the effect of liquid and vapour flowrates on
column diameter are discussed. Afterwards the tray ef-
ficiency is studied.

Theoretical Stage Reguirement

Heucks showed in the case of binary mixtures that for
the same separation different number of theoretical
stages ave needed at distillation and the alternative
separation processes [2]. Our rigorous caleulations jus-
tify these phenomena for multicomponent mixtues. As
it is proved, the theoratical parastillation stage require-
ment (isi‘- fwith 1/2 way spacing) and the theoretical
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Fig.8 Column diameter as function of liquid and vapour
flowrate

metastillation stage requirement is 1.5 of that of the dis-
tillation.

Colamn Diameter

In Fig.8 the column diameters are plotted against the lig-
uid flowrate in the colurnn for different vapour load. For
calculation SULZER’s METAWA type valve tray is con-
sidered [8]. The effect of varying liquid flowrate on the
diameter is linear in a fairly wide range. It can be seen in
Fig.8 that decreasing the L/G ratio from 2 to 1, the
column cross-section area decreases not greater than 30
% and this effect alone cannot compensate the increase
of column height.

Tray Eﬁicéencj?

Taking into account the efficiency differences caused by
liquid flow direction on the trays for distillation and the
alternative separation processes the Murphree vapour ef-
ficiency is determined in the function of point efficiency
[7] (Fig.9). It can be seen that although the flow patiern
at parastillation is the most promising the Emv proved to
be the greatest in the case of metastillation due fo the
smallest L/G ratio. Selecting the 50 % point efficiency
the numbers of theoretical and practical stages are
plotied in the function of the theoretical stage require-
ment at distilfation in Fig. 0. The distillation process
shows smaller number of stages especially against the
parastillation. This can also be observed in Fig.11. How-
ever, it is to be noted that at parastillation one stage
needs only half fray spacing compared to distillation.
Furthermore, since the L/G ratios at parastillation and
metastillation compared to distillation are doubled and
halved, respectively, the column cross-section areas are
only roughly 30 % greater and smaller, respectively. In
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Fig.12 all these effects are summarized by expressing
the total tray’s area in the colurnns as a function of the
point of efficiency. While this figure is proportional to
the investment cost it is clear that at usnal range of point
efficiencies the parastilation cannot play any role and
the metastillation seerns to be the most promising.

Conclusions

The results of this study can be summarized as follows:

1.

2

A new computer model using iterative approach
is developed to simulate metastillation processes.
The effectiveness of separation is amalyzed in
several multicomponent examples and it is shown
that in the case of metastillation the required
pumber of theoretical stages increases by 50 %
compared to distilfation.

In the case of metasiillation the L/G ratio
decreases by 50 % compared to distillation, how-
ever the corresponding reduction of the column
cross-section area {not greater then 30 %) cannot
compensate the growth of the column height.
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4.

stages (Naj = 100, Npa = 143, Npe = 150)

Considering Murphree vapour tray cfficiencies
the metastillation shows the greatest values for
given point efficiencies and thus this alternative
separation process needs the smallest total
separation area in the column,

SYMBOLS

AB,CD, see Table 1

E
B
D
Emy
Eop
F
h

Bottom product, kmoV/hr (Fig.2)
Distillate, kmol/hr (Fig.2)

Murphree vapour efficiency, %

Tray point efficiency, %

Feed flowrate, kmol/br

Liquid enthalpy, kJ/kmol

Vapour enthalpy, kI kmol

Qas flowrate, kg/br

Equilibrium ratio

Number of components

Mumber of theoretical stages at distillation
Number of theoretical stages at parastillation
Number of theoretical stages at metastillation
Heat duty, kl/hr

Reboiler heat duty, kI/br

Condenser heat duty, kI

Temperature, °C

Liquid side produst, kanolfar

Vapour flowrate, kool

Wapour side product, krnolfhe

Liguid molefraction

Vapour molefraction

Feed molefraction
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Subscripts

i component index
] tray index

k see Table 1

n nth stage

p see Table 1
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