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The egquations for the calculation of the void
fraction of layers fluidized with & liquid,most widely
Xnown from literature, and those derived from the
first paper of the series are briefly described. The
equations are transformed to & form which can readily
be applied in practice even in the case of porous
particles. The mean values of the "constant coeffici-
ents'" of the equations, and the dependence or inde-
pendence of the- different "constants” on the various
parameters was studied. The calculation methods are
evalusted by the comparison of void fraction values
determined experimentally apd calculated by the pro-
posed equations.

The expansion of fluidized layers can - among others - be
characterized by the void fraction [1]l. A number of calculation
methods are known for the determination of the void fraction of
layers fluidized with a 1liguid on the basis of the flow rate of
the liquid, the diameter of the particles and other parameters. In
the previous paper of the present series, an equation was derived
in a theoretical manner which enables the void fraction of layers
fluidized with a liguid to be calculated [2].

The present paper briefly summarizes the most important

equations for the calculation of void fractions known from litera-
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ture. Equations taken both from literature and proposed by the
authors are evaluated critically. In the course of the latter, the
dependence or independence of the ‘'constant coefficients" of the
equations on the parameters of the liquid and of the particles was

studied, and the applicability of the equations was put to a trial

by the comparison of results obtained, on the one hand, by calcu-
lation with the equations, and, on the other, by experimental
measurements. -

METHODS FOR THE CALCULATION OF THE VOID FRACTION OF LAYERS

FLUIDIZED WITH A LIQUID.

When deriving equations for the calculation of the void
f;action of fluidized systems and studying the laws of such sSys—
tems, a number of researchers have come to the conclusion that the
void fraction is proportional to the flow rate of the fluid and
the falling rate of the individual particles.

To a considerable degree, RICHARDSON and ZAKI [3] promoted
the theories related to the expansion of fluidized layers known
up to now. The eguations they proposed describe the dynamic equi-
librium of the individual particles as a function of the particu-
lars of the layer and of the apparatus. The following groups were

determined by analysis:

- - f (Re, *%—, €') (1)
~

The data relating to layer expansion were given in the fol-
lowing form:

1 (2)
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According to the above equation, the function flow rate of
the liquid vs. void fraction, when drawn in a 1lg-1g co-ordinate
system, gives a straight line whose slope is a;. The experimental
data were examined by this method and the following equations were

presented for the calculation of aj:

d

a; = (k.35 + 17.5 ) Re 203 ir 0.2 < Re < 1 (3)
a1 = (L4.4s + 18.0 %) Re‘o'l, if 1 < Re < 200 (&)
a; = 4.5 « ge O3, if 200 < Re < 500 {s)
a] = 2.39, if 500 < Re < 500 (6)

The Reynolds-numher contained in these expressions is the

follbwing:
Re = L 4 p! : (1)

JOTTRAND [4] proposed two equations for the calculation of
the void fraction of fluidized layers. One of these is essentially
identical to Equation (2) described in the foregoing, whereas the

other is the following:

18 5v = a2 (1 - &) (8)

Equation (8) represents, according to the author, a good approxi-
mation 1if the void fraction is within the range of 0.7 to 1 and

the value of a, is 2.63.

In his book on fluidization, BLICKLE [5] proposed - among
others - the following expression for the calculation of the void

fraction:

m1

et - . m (9)

o -
B
=

It has already been pointed out in connection with the éxa-

mination of the above Equation tha& a better agreement with expe-
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rimental data can be obtained by application of the following

supplemented formula [61]:

Ay ——= (10)

SAXTON and his co-workers [7] proposed an equation for the
calculation of the wvoid fraction of layers fluidized with a liquid
based upon the cell-model theory of homogeneous fluidization:

s')‘1/3 - (1 - e')'1/3 = 18.8 Re Ar
c . m

0.86

(1 (11)

where the Reynolds-number is equal to Equation (7) and the Archi-
medes number is the following:
{p - p')p'd g
Ay = —MmMmMM (12)

)‘IZ

Connections describing the streaming of the fluid, the motion
of the particles and the layer expansion in systems fluidized with
a liguid were derived, starting from the physical model; these
were described 1in thé first paper of the present series [2]. The
following equation was obtained for the expansion of layers flui-
dized with a liquid [2]:
=1-0.75 (1 - (13)

€

ut.3/2
- )

e

'
c

In the practical application of the above equation 4t was
found that the value of the constant differs in practice from the
thecretically derived value of 0.75 to a considerable degree, and

consequently the eguation can be written in the following form [6,
81:

- - U’ 3/2 .
€ =1-8a(1-—2) . - {1k)
e .
Consgidering that Equation (14) is valid even at the minimum
- fluidization rate, the following equition can be given for the

calculation of the void fraction [2]:
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1 - e!
m

Uu'.3/2
. 7 -5 (15)

(1 . m y3/? e

u
e

In the following, the applicability of Equations (2), (8),
(10), (11), (14) a%d (15) is examined according to ths two points
of view mentioned in the introduction of the present papex. Matu-
rally, in addition to these equations, a large mumber of calcula-
tion methods have been described in literature [5, 6, %, 10, 11,
12, 13, etc.]. However, the description and evaluation of these is
outside of the scope of the present paper whose intention is only
to illustrate the applicability of a few of the more widely known
caltulation methods and to compare them with the Equatioms (14)
and (15) derived by the authors.

EXPERIMENTAL AND MEASUREMENT TECHNIQUES

The technique based on the determination of layer height was
applied for the determination of the mean void fraction in the ex-
perimental studies on the expansion of layers fluidized with a
liquid. The experiments were carried out in a cylindrical glass
apparatus with a diameter D = 0.04 m which contained a fritted
glass disk of the porosity of G2 in order to sustain the fluidized
layer. The height of the latter was measured, to an accuracy of a
few miilimetres, by means of a scale secured to the wall of the
appara%us and the mean void fraction was calculated with the fol-

lowing formula:

G
i (16)
&

The quantity of the streaming liquid (water) was measured
with a rotameter. The linear flow rate was calculated from the vo-
lumetric flow rate and the cross sectional area of the apparatus.

Y -

®mi

|
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The minimum void fraction values were calculated from the
minimum fluidization layer height by means of Equation (16). The
minimum layer height was determined by measuring the layer height

produced upon slow reduction of the liguid flow rate.

The minimum fluidization rate was obtained from the measured
mean void fraction-flow rate values by extrapolation of the flow

rate to the minimum void fraction.

The mean falling rate of the tested particle fractions was
determined, having plotted the liquid flow rate against the meas-
ured mean void fraction values in a lg-1g plot, by graphical ex-

trapolation of the liquid flow rate to the value of €' » 1.

The mean porosity of the particles was determined by appli-
cation of a technique, based on the identical space filling pro-
perties of particles of similar shape, proposed by the authors of

this paper ([14].

EXPERIMENTAL RESULTS

The experiments on layer expansion were carried out with a
total of 29 particle fractions prepared of 5 different materials.
The streaming liquid in the experiments was tap water of 12 - 14 ¢
temperature. The extent of layer expansion was determined with
each particle fraction at 13 to 15 different flow rates. The de-
pendence of the void fraction of the layer on the flow rate of the
liquid is not presented in detail, merely the most important data

are summarized in tabular form.

The most important physical properties of the examined gra-
nular materials (such as density, and porosity), the mass of the
material weighed in for the experiment, the mean size and the size
limits of the tested grain fractions, as well as the experimental
data pertaining to the minimum void fraction, minimum fluidization
rate and the mean falling rate of the paxticles are summarized in

Tables 1. to 5. shown ir the following.
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e 1.

System glass beads—water

2960 kg/m3,

p = =0, G = 0.08 kg
3-103 (m) E%t UA~102 (m/seé) -102 (m/sec)
1 0.15 0.4t 0.06 2.0
2 0.18 0.4y 0.12 2.5
3 0.25 0.4Y 0.20 3.2
b 0.L42 0.k4b 0.30 L.2
Table 2. System sand—water
p = 2635 kg/m3, = 0, G = 0.05 kg
a-10° {(m) E;t Um'*lo2 (m/sec) ﬁe-lo2 (m/sec)
1 0.10 - 0.20 0.51 0.08 1.2
2 0.20 - 0.32 0.51 0.13 2.5
3 0.32 - 0.ko0 0.51 0.19 3.9
5 0.4 - 0.50 0.51 0.26 5.0
5 0.50 - 0.63 0.51 .39 5.9
6 0.63 - €.80 0.51 0.6k 7.0
7 0.80 - 1.00 0.51 1.10 9.0

499
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Table 3. System hematite—water

p = 4150 kg/m3, Ep = 0.12, G = 0.09 kg

Vol.

d-lO3 (m) Eit UH'J-lO2 (m/sec) 56-102 (m/sec)
1 0.10 - 0.20 0.56 0.1¢C 1.5
2 0.20 - 0.32 0.56 0.30 L.o
3 0.32 - 0.ko 0.55 0.60 6.0
b 0.40 - 0.50 0.55 0.95 7.5
5 0.50 - 0.63 0.56 1.30 9.5
6 0.63 - 0.80 0.57 1.70 12.0
T 0.80 ~ 1.00 0.57 2.20 15.0
Table k. System porous nickel spheres—water
p = Th50 kg/m3, EP = 0.32, G = 0.13 kg
d-lO3 (m} €;t U;l-lo2 (m/sec) 58-102 (m/sec)
1 0.20 - 0.32 0.60 0.5 7.0
2 0.32 - 0.k0 0.59 0.8 12.0
3 0.%50 - 0.s50 0.59 1.1 18.0
4 0.50 - 0.63 0.59 1.k 25.0
5 0.63 - 0.80 0.58 1.8 33.0




1973 Studies on the Hydrodynamics of Fluidized Layers III. ~ 501

Table 5. System burnt clay—water

o = 2h20 kg/m3, Ep = 0.50, G = 0.03 kg

4-10° (m) el Un'l-lo2 (m/sec) G107 (m/sec)
1 0.20 - 0.25 0.T5 0.12 1.4
2 0.25 - 0.32 0.75 0.18 1.8
3 0.32 - 0.ka 0.76 0.25 2.4
4 0.0 - 0.50 0.76 0.36 3.2
5 0.50 - 0.63 0.76 0.45 3.8
6 0.63 - 0.80 0.76 0.55 h.6

APPLICATION AND EVALUATION OF THE CALCULATION METHODS

The starting poiht in the examination of the formulas propo-
sed for the calculation of the void fractlon is that these enable
determination of the free volume or liquid-filled volume fraction.
There is no problem in the case of materials consisting of compact
granular materials; however in the case of porous particles the
void fraction values determined in practice experimentally refer
not only to the free space between the particles, but also include
the pore space of the particles filled with the liquid. This is
brought about by the fact that the density of the particles is de-
termined in most cases with the pycnometer technique with the
application of a 1liguid which has good wetting properties and in
which the material of the particles is insoluble. This means that
by this technique practically the density of the solid forming the
material of the particles is determined and only the closed pores
and channels, or those of such small dimensions as to be imperme-
able for the liquid may cause some deviation. Moreover, it often
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occurs that the density values are simply taken from literature or
{rom handbooks; however, such data most frequently refer to the
compact material. Whether it is a density value determined by a
pycnometer, or one taken from literature that is substituted into
Equation (16), the obtained (experimentally determined) void frac-
tion values include the total volume permeable by the liquid. The
aforesaid should be taken into consideration in the evaluation of
the calculation methods, because in the case of heap of porous

particles this is the only reliable method of evaluation.

Starting from the definition of the void fraction and based
on geometric considerations, the following connection between the
two kinds of void fraction values may be written:

(17}

=e + (1-e) Eé

™l
-
Le]

Accordingly, in order to be able to carry out the calculation,
the mean porosity of the heap of particles has to be known. A
simple measuring technique, which can be utilized in an easy way,
has been develcped by the authors [14].

In the application of Equation (2) described by RICHARDSON
and 2AKI [3]1 the first question is the following: which is the
equation that is to be used for the calculation of the “constant?®
ay. Calculations were carried out in this respect and it was con-
cluded that in the case of the models encountered in practice it
is Equation (4) that is most frequently applicable. Accordingly,
on the basis of Equations (2), (4) and (7) the following can be
written:

0.1

U’ Re
"=+ (1 - g y(Ey Re T” (18)
E P Fl¥e ks 418 2

€

The next guestion which is encountered is whether the Reynolds

number is to be calculated for each separate liquid flow rate. The

above problem is unequivocally settled by the data presented in
Table 6.
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Table 6. System sand—water

d-10 a a] ay a1y
calculated calculated calculated measured
(m) e' = 0.6 £' = 0.8 g' = 1 (mean)

0.10 - 0.20 5.1 .5 k.3 k.1
0.20 - 0.32 4.} k.o 3.8 3.7
0.32 - 0.ho k.1 3.8 3.6 3.4
0.40 -~ 0.50 3.9 3.6 3.5 3.2
0.50 - 0.63 3.8 3.5 3.k 3.0
0.63 - 0.80 3.6 3.k 3.3 2.9
0.80 - 1.00 3.5 3.3 3.2 2.8

As it is apparent from Table 6, the agreement between the a;
values determined experimentally on the one hand, and calculated
with Equation (4) on the other, is best if &' = 1, i.e. if the
mean falling velocity of the particles is substituted into the

equation.
Considering this fact, Equation (18) can be written in the

following form:

(u a p,)O.l
< (19)

s, + (1 e )

'
t e uw % tuus + 18 D

Fig. 1 shows the difference between the void fraction values
determined experimentally and calculated by Equation (19), plotted
against the experimentally determined value. It can be concluded
from the Figure that the relative deviation is in all cases lower
than + 10 %, and in the overwhelming majority of the cases it is

lower than + 5 %. Computer evaluation led to the conclusion that

the mean relative deviation is * 2 %.

Equation (8), described by JOTTRAND [4], can - considering
Equation (17) - be written in the following form:
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Fig.l. x - glass beads; o - sand; ® - hematite; * - porous nickel
spheres; A - porous burnt clay
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1 - ¢ u

Bl =1 - ——EZ—E 18 v (20}
The value of the "constant" ap; of the equation was determined
for the model substances used in the experiments in about 400
cases and ap = 1.75 was obtained as a mean value. The mean scat~
tering of the "constant" a,, as a function of flow rate, was found
to be o = % 9 %, whereas the scattering depending on a particle

size was ¢ = % 13 $%.

The difference in void fraction values determined experimen-
tally and calculated by Equation (20) (a, = 1.75), plotted against
the experimentally determined value is shown in Fig. 2. It is ap-
parent from the Figure that the relative, deviation is, in most
cases, lower than * 10 % and the average relative deviation is +5
and -3 %.

On the basis of Equation (10) [5] and taking Equation {17)

into consideration, the following equation can be written:

e 2 , \ 1/2

P) gr - Um .
1 - ¢ u

P e

e!,
T _ mt
ey = &p * (1 sp) (

The mean value of the "constant" is 53 = 1.15, its mean
scattering depending on the flow rate of the liquid is ¢ = + 18 &,

its mean scattering depending on the particle size is o = % 16 %.

The difference in void fraction values determined experimen-
tally and calculated by Equation (21) {az = 1.15), plotted against
the experimentally determined value is shown in Fig. 3. It can ke
concluded from the Figure that except for a few cases the relative
deviation is lower than % 10 %. The mean relative deviation was
found to be *+ 4 %.

In the examination of Egquation {11) derived by SAXTON and
his co-workers [7] it was found possible to bring it to a simpier

form by substitution of Equations (7) and {12}:

ESN
18]
i8]

y-1/3 _ _sé}—l/Z _ o

(1 - ¢ "
e
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On the basis of Eguations (22) and (17), the following for-
mula can be written for the calculation of the void fraction:

(L -er )2 - Ep)

[(1 - ep)l/3 + (1 - en)t/3 L3

™1

ot =
[}
[y
¥

23)
m u
e

The difference in void fraction values determined experimen-—
tally and calculated by Equation (23}, plotted against the experi-
mentally determined values, 1is shown in Fig. 4. It is apparent
from the Figure that in the overwhelming majority of the cases the
relative deviation is lower than +5 and -10 %. The mean relative
deviation is +2 and -5 %.

Taking Equations {14) [2]1 and (17) into consideration the
Equation derived by the authors is the following:

71 /o L.

=1 - oay (1-e)(1 - 53F (2u)
b4

e

ml
o+ -

It was found in the experiments that the mean value of the
"constant" a, = 0.55, its average scattering depending on the flow
rate is ¢ = * 6 % and its average scattering depending on the par-

ticle size is ¢ = =10 %. Accordingly, Equation {24} can be written

in the following form:

¥
P =1 - 0.s5 (1 - e {1 - 1537 (25)
% T Ue

The difference in mean void fraction values determined expe-
rimentally and calculated by Equation :25) plotted against the ex-
perimentally determined value is shown in Fig. 5. It is apparent
from the Figure that the relative deviation is in all cases lower
than =+ 10 2 and in the overwhelming majority of the cases lower

than * 5 %. The average mean deviation is +3 and -2 5.

Equation {15} [2], as written on the basis of Eguation 14t

derived by the authcrs can be brought to a simpler form:

3%

o1

-
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The difference in the void fraction values determined expe-
rimentally and calculated by Equation (26), plotted against the
experimentally determined values, is illustrated in Fig. 6. It can
be concluded from the Figure that the relative deviation of the
measured and calculated values is in the overwhelming majority of
the cases lower than +10 and -5 %. The mean relative deviation is
+4 and -2 %.

Summarizing the aforesaid it can be concluded that from
among the formulas used for the calculation of the void fraction
of layers fluidized with a liguid, Equation (19) derived from the
Equation (4) of RICHARDSON and ZAKI [3], and Equation (25) derived
from the Equation (14) by the authors of the present paper [2] are
those yielding results which best approximate the values determi-

ned experimentally.

The agreement was also fairly good in the case of the other
examined formulas; however, in case of these the mean relative de-
viation was on the one hand higher, e.g. Equations (20) and (21),
and on the other the higher deviation is asymmetrical, e.g. with
Equations (23) and (26). It is to be noted that from among the
above Equations {20) and (23) yield values which at higher layer
expansions show a good agreement with the experimental data. Equa-
tions (19) and (25) describe the layer expansion correctly in the
whole range and consequently the application of these is recommen-
ded for the calculation of the expansion of fluidized layers.

SYMBOLS USED

a1, as, ag, &y constans

Ar Archimedes-number [cf. Equation 112!]
d diameter of the particles {metre’
d mean diameter of the particles imetre’

D diameter of the apparatus {metrs’



[L]]
vt

[4]]
1 -

Z. Orm8s and T. Blickle Vol.

cross sectional area of the apparatus (m2)
gravitational acceleration.(m/secz)

mass of the particles present in the layer (kg)
Reynolds-number [cf. Equation (7)]

falling rate of'éhe particles (m/sec)

mean falling rate of the particles (m/sec)

linear flow rate of the liquid as referred to the total

cross sectional area of the apparatus (m/sec)
minimum fluidization liquid flow rate (m/sec)
height of the layer (m)
minimum layer height {m)
mean void fractibn of the layer
calculated mean v6id fraction of the layer

minimum void fraction of the layer

minimum total void fraction or liguid volume fraction of the

laver
pore volume fraction of the particles

mean pore volume fraction of the particles

calgulated mean total void fraction or liquid volume fraction

©of the layer

mean total void fraction or liquid volume fraction, determi-

ned on the basis of layer height measurement
dynamic viscosity of the liguid {kg/sec-.m)
density of the particles {kg/m3},

density of the liquid {kg/m3}
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PE3RME

B maHHON CcTaTbe asTOpH HPaTHO O03IHAKEMAMBART C MMEHUWKWMWCA B
nutepatype Haubonee pacnocTPaHeHHHMW YPAasHEeHWAMH, a8 TaMse C BhBe-
OEHHHEMM MMM B Npejufylie#t cTaTee [aHHOMO UWHA2 33BUCHMOCTAMM, ans
BWUMCABHWA NOAW CBOGGAHOrO o6beMa NCEBAOOKMWMEHHLIX MOCPEACTEOM MML-~
HOCTW CROBB. YKa3aHHHE 38BHCHMOCTH MPUBOAATCA H BMAY, TNPAHTHHECHHM
HEMOCPEACTEEHHO MPUMEHHMOMY, PacrnoCTpaHAmlWeMycs game Ha chayda#
NOPUCTHX 4acTHly. ABTOpamMd onpegensHb CpejHWe 3Ha4YeHHd HMeKuMXcs
8 ypasHeHMAX "MOCTOAHHHIX COMHOWWTEneH”, HpoMe Toro, "NOCTOAHHLE"
GuiiW MNpoBepeHs Ha 3aBMCHMMOGTE OT pPasnu4HEX napaveTpos. buna npose-
AeHa NpoBEpHa pacYeTHHX METOL08 MNOCPEACTBOM CpaBHEHWA nofiyHeHHLX
SHCNEGMMBHTANEHO W PACCYMTAHHLIX MO YPDaBHEHWHAM 3HAYEHWM JAONWM CB8O-
GogHoro oSwema.
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