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It is important to Xxnow the influence of the
characteristics of the granulator and the procedure
upon the physical properties of the granulates produ-
ced, both from the point of view of the granulator
design and the determination of the optimum operating
parameters.However, Tew papers dealing with the adove-
-mentioned questions are to be found in literature.
The effect of the following factors: ratio minimum bed
height to diameter of bed, degree of expansion of the
fluidized bed, degree of dispersion of the granulating
ligquid, distance of the atomizer as measured from the
air distributor eand the type of the distributor upon
the physical properties of the granulates produced wvas
studied in a laboratory-size fluidized bed granulator
of batch operation. In the evalustion of the experi-
ments, the results are compared with the conclusions
published in literature and the nearly optimum values
for the above-mentioned variables are given.

From among the parameters having an influence upon the phy-
sical properties of granulates produced in a fluidized bed, the
effect brought about by changes in the relative amount of the gra-
nulating liquid, the rate of addition of the latter, its concen-
tration, and the total amount of binder fed in were investigated
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in the previous papers of this series [1, 2]. Approximative formu-
lae were presented on the basis of those experiments for the cal-
culation of the mean diameter of granules and the feed rate of the
granulating liquid. The present paper deals with such characteris-
tic parameters of the procedure and the apparatus that are of im-
portance mainly in comnection with the design and operation of

fluidized bed granulators. These parameters are the following:
- ratio of the minimum bed height to the diameter of the bed;
~ degree of expansion of the fluidized bed;
- degree of dispersion of the granulating liquid;
- distance of the atomizer from air distributor plate;
- performance of the air distributor plate.

As an introduction, conclusions of other authors in connec-
tion with the effect of the above-mentioned variables so far pub-
J,lished in literature are summarized. The experimental results and

conclusions drawn from them are then described.

In the design of fluidized bed granulators when deciding the
size of the material container, or in the case of an existing ap-
paratus, when determining the charge weight, the question of the
preferable ratio minimum bed height to bed diameter arises. Simple
fluid mechanical considerations also lead to the conclusion that
this geometric simplex may have an optimum value or optimum value
range. It is known from literatyre on fluidization [3, 4] that an
increased danger of channel formation, {slugging} is encountered
both with too shallow and with too high beds. These irregularities
have an adverse effect on the mixing, heat and mass—transfer pro—
cesses and also on the granulation. In addition, the ratio bed
height to be¢d diameter may influence the probability of collisiod
between the atomized liquifd droplets and the particles, and also
the rate of agglomeration [5]1. In spite of the probably conside-
rable influence of this variable on the physical properties of the
granules produced, and of its economic importance {maximum utili-
zation of the capacity of the apparatus}), no paper so far pub—
lished deals with this question in the manner that it deserves.
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The degree of bed expansion is a very important characteris-—
tic of fluidization and its effect must be taken into considgra-
tion in all processes carried out by fluidization. In the case of
fluidized bed granulation, an appropriate choice of the degree of
bed expansion is of decisive importance regarding the final size
distribution particle of the product [5, 6, 7, 8]. An increase in
bed expansion tends to decrease the mean granule size {5, 8} becau-
se the more vigorous motion results increased abrasion. Another
factor which makes higher bed expansion undesirable is an increase
in elutriation. On the other hand, too small bed expansion brings
about decreased mixing, "heat and mass transfer, leading to the
fofmaﬁion of "lumps" beyond the prescribed size limit. Accordingly,
the optimum value of bed expansion is always a compromise between

processes which are adverse as regards granulation and which tend

to act against each other.

It is very difficult to determine accurately the degree of
the dispersion of the granulating liguid, 1i.e. the size, and size
distribution of thé atomized droplets. Consequently, the effect of
this parameter was studied only in an indirect manner. For example,
in the case of two-fluid atomizers, which are most frequently app-
lied in the practice of fluidized bed granulators, the effect of
the pressure and flow rate of the atomizing air upon the physical
properties of the produced granules were studied {8, 91. The opi-
nion of the different authors on this gquestion is divergent. Ac-
cording to the paper of SCOTT and his co-workers [5], containing
mainly theoretical considerations, it is to be expected that the
mean drop size of the spray influences the process of granulation.
The authors ascribe this to two facts: first,increasing the degree
of dispersion also increases the specific suiface area of the
droplets and together with it the rate of evaporation of the lat-
ter. Secondly, the size, size distribution and number of atomized
droplets influence the probability of collision between the drop-
lets and solid particles, and thus also the rate of agglomeration.
However, no experiments were carried out to study the influence of
the degree of atomization. According to the work of MOBUS (8],
changing the pressure of the atomizing air between certain limits

i



L78 2. Ormbs, K. Pataki and B. Csukés Vol. 1.

does not appreaciably influence the physical properties of the
granules. Unfortunately, experimental results were not published
and accordingly it is impossible to determine even the pressure
range studied. 'Detailed experimental data have been published by
DAVIES and GLOOR [9]1. In contrast to the above-mentioned author,
they found that upon increasing the atomizing air préssure from
0.5 to 2.0 kg/cm?, the mean granule size was decreased from 438 to
292 .

The vertical distance of the spray nozzle from the air dis-
tributor is restricted between certain limits [5, 7]. The lower
limit that can be taken into consideration is defined by the con-
dition that the atomized liquid must not wet the distributor plate
because this would lead to the formation of large lumps, clogging
of the distributor and stopbing of particle motion. The upper
limit of the location of the atomizer is determined by the spray
cone angle and the bed height, on the basis of the condition that
the atomized granulating liquid should not wet the wall of the
granulator. Opinions differ as to whether or not the variation of
the height of the nozzle between the above-mentioned limits influ-
ences the physical properties of the granules. According to MUBUS
[8], <changing the position on the nozzle does not appreciably in-
fluence the physical properties of the granules. On the other hand
various authors have observed that increasing the distance between
the atomizer and the distributor brings about a decrease 1in the
mean granule diameter [6, 9]. The change can be termed as conside-
rable. For example, experiments carried out by RANKELL and his co-
~workers showed that the mean granule size was decreased from 500y
to half this value when the atomizer in a granulator, 0.3 m in
diameter, was lifted from a height of 0.75 to 1.5 m [61. The phe-
nomencon was mainly explained by the following consideration: in
the case of a highly positioned atomizer, the spray drying that is

undesired from the point of view of granulation, become prevalent.

In the case of fluidized bed granulators, mainly perforated
plates, sieves and porous plates are applied as distributors. A
number of points simultaneously have to be taken into considera-

tion when choosing the distributor. Economic considerations re-
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quire a distributor plate that is simple, inexpensive, easy to
procure, and causes a low pressure drop. Fluid mechanical conside-
rations would require gas distributor plates made of sintered
glass or metal, fireclay, or other similar porous materials, in
order to obtain optimum fluidization motion and to avoid irregula-
rities in the fluidization process [3, 4]. This guestion can be
solved satisfactorily only 1f the influence of the quality of the
distributor op the physical properties of the granulates produced
is known. As far as the authors know, no other researchers have so

far dealt with such studies.

Having reviewed the literature connected with the subject 1t
can be stated that the parameters in guestion include some wvhose
effect has yet not been studiled in -any way; in the case of others,
mainly theoretical conclusions were drawn and the latter were
checked by a few experiments only. In some cases the conclusions
of various authors were contradictory to each other. To summarize
it can be stated that the data in literature are insufficient to
determine the approxifately optimum vyalues of the different para-

meters.

EXPERTMENTAL APPARATUS AND METHODS

A detailed description of the laboratory-size fluidized bed
granulator used for the experiments and the experimental tech-
niques will be dispensed with, because they are similar to those
described in the second paper of this series [1]. The materials
used in the experiments were a quart: sand fraction of (0.1-0.2)x
x10 °m particle size and & granulating liguid which was an agueous
gelatine solution of ¢’ = 60 kg/m* concentration. The relative
amount of the granulating ligquid as referred to the total particle
volume of the starting material to be granulated (V'/V = 20 % by
volume), the feed rate of the granulating liguid (w' = 5.9x107°
kg/sec) and the input temperature (Tg = 70 °C) were kept constant.
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EXPERIMENTAL RESULTS

The results of the research work carried out in order to
study the influence of the technical and apparative parameters
listed at the beginning of the present paper will now be described.
The influence of changes in the individual parameters upon the
mean particle size of the granulated material obtained, the mean
porosity of the granules and the relative amount of the "product
fraction" are illustrated in the Figures. Considering the conclu-
sions on the reproducibility of the experimental results,published
in the second paper of the series [1], three parallel experiments
were carried out for each experimental boint. The poiﬁts drawn
into the Figures represent the mean value of three such parallel
results. It should be noted in connection with the Figures that
the only reason to connect the experimental points with straight

lines was to illustrate the trends of the changes.

a) Influence of Changes in the Minimum Initial Bed Height and Bed

Expansion on the Physical Properties of the Granules

B3

In the case of a given diameter of the granuwlator, the mini-
mum bed height of the material to be granulated can be altered
by changiné the amount of the material fed in. In the first expe-
rimental series, the initial particle volume was iqcreased from
200x107% to  600x107% m3, in steps of 100x107® m3. Siﬁultaneously.
the minimum initial bed height showed an approximately threefold
increase. Qf course, in proportion with increasing the amqunt
of the material, the amount of granulating liguid was also in-
creased, so as to have a constant relative am@unt<of granulating
liquid as referred to the particle volume- of the material to be
granulated.

Fig. 1 shows the changes in meanrgranule diameter and mean

porosity of granulated material plotted against the minimum initi-

.
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al bed height. With increasing minimum initial bed height, the
mean granule size shows at first an abrupt decrease and later on
it convergeg to a limiting value. In addition, it is apparent that
the change in mean granule size is strikingly large as the minimum
starting bed height is increased from 6.4x1072 to 8.7x10°2 m. The
mean porosity of the granules closely follows any changes in the

mean’ grénule diameter. The relative amount of a granule fraction

_and any changes in this amount depending on the parameter under

test are index numbers of considerable importance from the point

.of view of production. Fig. 2 shows the changes in the relative

amount of the granules of the dimension (0.2 to 2.0)x1073 m plot—
ted against :Ehe minimum starting bed height. The weight ratio of
the grarule fraction conforming to the limits (0.2 to 2.0)x10"2 m
is the highest (0.81 %) at a minimum starting bed height of
6.4,10-2- m. Further increasing the initial bed height is very dis-

advantageous from the point of view of this parameter.
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The degree of expansion of the £luidized bed can be charac-
terized in the simplest way by the ratio height of the fluidized

-
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bed to the minimum bed height. During the granulation experiments,

this ratio was approximately maintained at the predetermined value.

With progressive agglomeration, the minimum bed height also
changes (it generally increases). Accordingly, from time to time
the air supply was stopped for a short period, the minimum bed

height was determined, and the air flow rate was adjusted so as to

obtain the same relative bed expansion.

In the experiments described so far, the ratio bed height to
minimum bed height was the same (Y/Ym =~ 1.6). In the study of the
effect of bed expansion, the value Y/Ym was increased from 1.3 to

2.5, in steps of 0.3, with the other parameters kept constant.
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Fig. 3 shows the changes in the mean granule size and the
mean porosity plotted against the degree of bed expansion. While
increasing the ratio height of the fluidized bed to the minimam
bed height from 1.3 to 2.5, the mean granule éize showed a -~ near-
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ly linear - decrease, Upon increasing the bed expansion, the mean
porosity of the granulates also decrease nearly linearly in the
range studied. It is apparent from Fig. 4 that the weight fraction
of the granules of the (0.2 to 2.0)x1072 m size range first in-
creases and thereupon it gradually decreases with increasing bed
expansion. The maximum value is at - or near to - a bed expan-

sion of 1.6.

b) Influence of Liquid Dispersion and Location of the Atomizer on

the Physical Properties of the Granules

In the case of the two-fluid atomizer used in these experi-
ments, the degree of liquid dispersion can be influenced by ad-
justing the pressure of the atomizing air. With constant feed rate
of the 1liquid to be atomized, the degree of liquid dispersion is
increased by increasing the air pressure. In order to determine
the connection between the two variables, it would have been ne-
cessary to measure the drop size distribution in the atomized
stream, and the variations of the latter as a function of the air
stream. However, such a detailed study of atomization was beyond
the scope of the present experiments and it was considered suffi-
cient, in order to be able to draw conclusions of a qualitative
nature, to study the effect of the degree of liguid dispersion in
an indirect manner, through the influence of the changes in the

atomizing air stream.

In the next series of experiments, the only changed parame-
ter was the air mass flow of the atomizer. The atomizing air flow
in these experiments was increased from (6.7 to 30.5)x107%kg/sec in
four steps. It is apparent from Fig. 5 that the mean particle size
of the granulated material is not influenced to an appreciable
degree even if the atomizing air flow is changed considerably. The
mean granule diameter changes in the (0.57 to 0.66)x10~3 m range:
at first it increases and thereupon it slightly decreases. The
mean porosity of granules shows an abrupt increase and afterwards
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1ts value remains constant. The relative amount of the granulated
fraction corresponding to the size range (0.2 to 2.0),10"3 m
changes according to a curve passing a flat maximum when plotted
against increasing air atream - as shown in Fig. 6. However, it
should be noted that when further increasing the atomizing air
flow, at a value of 43.3xlO‘5vké/sec, the experiment could no lon-
ger be evaluated. Accordingly, the changes in the physical proper -
ties of the granules brought about by the atomizing air stream are
not as slow and gradual as could be judged on the basis of Figs. 5
and 6, but abrupt changes can be observed under a lower and over
an upper limiting value. The explanation for this fact is that ad-
equate dispersion of the liquid stops under a certain given air
stream, whereas too fast an atomizing air stream virtually "shoots"
the liguid into the layer and the material to be granulated clots
unto the air distributor plate.
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The task of the next experimental series was to determine
the effect of changes in the height of the atomizer on the physi-
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cal properties of the granules produced. In these experiments, the
vertical distance of the atomizer, as measured from the air dis-
tributor plate, was changed from 9.10"2 to 24.102 m in steps of
3.1072 m,

At the same time, all other variables were maintained at a
constant value. The mean particle size and mean porosity of the

obtained granules plotted against the distance of the atomizer as

measured from the air digtributor is shown in Fig. 7, determined
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in these experiments. It is apparent from the Figure that the
height of the location of the atomizer does not influence the mean o
granule diameter tg a considerable degree within the studied range. k
The mean granule size value fluctuates between about 0.60x1073 and
0.65x107> m. In this case, the mean porosity does not follow the
Changes in mean diameter, but it gradually increases with the in-
Creasing distance between the air distributor plate and_the atom—
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izer. Loecation of the atomizer has a most marked influence on the
granule size distribution of the product. This is illustrated by
Fig. 8 which shows changes in the relative amount of the granule
fraction corresponding to the predetermined size range - (0.2—2‘.0)X
x1073 m - plotted against the distance between the atomizer and
the distributor. By lifting the atomizer from a height of 9.10-2
to 24.1072 m, the amount of granules ¢f product fraction was in-
creased, according to the trend apparent from the Figure, from

~ 53 % to ~ 86 & by weight.

c) Influence of the Quality of the Air Distributor on the Physical

Properties of the Granules

The influence of the quality of the distributor on the phy-
sical properties of the granules was studied with the application
of four different distributors, under otherwise identical condi-
tions. The distributor plates studied were the following: porous
glass plates, sieves of 25x10~6 and 90x107®% m openings, and a per—
forated plate of 12 mm perforations with a free surface ratio of
0.45; in order to prevent the escape of the granules, 4 sieve of

25x107% m openings was placed under the latter.

These experiments revealed the result that the mean granule
size, mean porosity and particle size distribution of the granula-
ted material obtained are practically independent on the quality

of the air distributor.

EVALUATION OF THE EXPERIMENTAL RESULTS

T—
According to the results of the present experiments, in-
creasing the minimum starting bed height of the starting material
decreases the mean granule size, and together with it, the mean
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porosity of the final product. An explanation for this phenomenon
can be given - as has already been pointed out in the introduc-
tion - by two reasons. Increasing the starting bed height over a
certain limit, this results in decreased uniformity of the fluidi-
zation, slugging and strong bubble formation being produced. The
latter brings about an ipcrease in the degree of regranulation.
The second important effect of increasing the initial bed height
in fluidized bed granulation is that - as far as the ratio of the
wetted surface area of the bed to the total surface area is un-
changed - increasing the bed height decreases the probability of
the solid particles meeting a ligquid droplet. In granulation tasks,
it is generally required that as much of the product as possible
should conform to the size limits defined by the purpose of appli-

cation.

With this in mind, and on the basis of Fig. 2 and other ex-

perimental findings, it can be stated that in fluidized bed granu-
lators it is preferable to choose an initial bed height that cor-
responds to 1/2 to 2/3 of the bed diameter (i.e. the inner diame-
ter of the granulator). In the case of initial bed higher than
that, the amount of particles left ungranulated will increase and

the amount of the granules of product fraction will decrease.

In the case of a given starting material and a given binder,
the degree of regranulation primarily depends on the intensity of
the motion of the particles and on the degree of bed expansion.
The decisive importance of this parameter regarding final granule
composition was confirmed by the present experiments and is also
in agreement with the findings of other authors [5, 6, 7, 81. Ac-
cording to Fig. 3, the mean granule diameter and perosity show an
abrupt decrease with increasing bed expansion, due to the in-
creased abrasion of the granules. It can be concluded on the basis
of Fig. 4 that the approximately optimum value is a relative bed
expansion to about 1.6 times the initial value.

The experimental results illustrated in Figs. 5 and 6 ju3§ify
the conclusion that the degree of liquid dispersion has, within

certain limits, no appreciable influence upon the physical proper-—
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ties of the granules produced in the process. Increasing the atom-
izing air flow, primarily influences the particle size distribu-
tion however, as it is apparént from Fig. 6, in the middle part of
the studied range, over a rather wide interval, even this influ-
ence is negligible. The amount of the "product fraction" is prac-
tically unchanged when the specific amount of atomizing air is in-

creased to double its value, from 1.8 to 3.6 kg air/kg liquid.

The conclusions of the authors as to the influence of the
degree of atomization agree with the opinion of MUBUS [8] and
disagree with the experimental results of DAVIES and GLOOR [9]. In
addition to the different experimental conditions and techniques,
this discrepancy can be explained by the fact that the drop size
distribution of the atomized liquid, or any changes 1in it, were
unknown in both cases and consequently the experimental results

cannot be compared.

Some authors {6, 91 observed a decrease in mean granule size
1f the distance of the atomizer, as measured from the air distri-
butor plate, was increased. In their opinion this is caused by the
fact that the drops must travel a longer way to reach the bed if
the position of the atomizer is higher. 1In this case, the smaller
droplets may dry and lose their adhesive property. In the opinion
of the authors of the present paper, whether the above-mentioned
process - undesired with regard to granulation - does or does
not occur, is determined not only, and not primarily by the posi-
tion of the atomizer. Factors such as, e.g. the temperature of air
leaving the bed, the concentration of the granulating liquid, and
the fineness of the spray, etc., are responsible in this respect.
The above process did not occur in the range studied in the pre-
sent experiments and it can be stated on the basis of Fig. 7 that
when changing the distance of the atomizer, as measured from the
distributor, within the practically feasible range, the mean gra-
nule size remains unchanged. However, an interesting phenomenon
can be observed on Fig. 7. This is the following: the higher posi-
tion of the atomizer leads (even in the case of decreasing mean
particle size) to the production of gfgﬁhles of higher pOIOSity-H
This observation can be explained by the fact that increasing the
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distance of the nozzle from the air distributor plate, granule
production can also occur in a bed of lower density, where the
abrasive and compacting effects are less pronounced than in a flu-
idized bed of higher density. 1In the case of an unchanged cone
angle of spray, the higher position of the atomizer increases the
wetted surface area of the bed, 1i.e. the wetting is more uniform;
and consequently the amount of granules of “"product fraction" is
increased (cf. Fig. 8). Of course, this can be true only up to a
certain limit, since in the case of a too highly positioned nozzle,
part of the granulating 1liquid wets the wall of the gramulator
instead of the bed as was pointed (out in the introduction), this

is disadvantageous from several points of view.

On the basis of the results of these experiments and the ex-
perience on granulation acquired over several years, the following
formula is proposed for the determination of the approximately op-
timum distance of the atomizer as measured from the air distribu-

tor plate:

b
2 tg

(1)
a
2
Equation (1) expresses that the granulating liquid is to be
atomized on top of the dense layer (Yd:: Ym) in such a way - in
order to prevent "carry up to the wall® - that the diameter of
the circular wetted patch on top of the dense layer is 0.8 times

the diameter of the apparatus.

The result obtained in connection with the influence of the
type of distributor is of major importance. It can be concluded
that it is wunnecessary to apply distributors made of a porous
plate, whose production on an industrial scale is difficult and
expensive, and whose resistance against flow is high. The particle
size distribution and other physical properties of the granulated
material by the granulation process remain unchanged, if instead
of a porous plate, a sieve of adequate mesh is used as a support.
A perforated plate of large free cross sectional area is placed

under the sieve to supply mechanical strength.
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The results reported in the present paper were applied in
the design of the pilot-plant and the industrial-scale fluidized
bed granulator. The correctness of the design principles is con-
firmed by the fact that the physical properties of the granules
produced by the equipment, correspond in every way to the prede-

termined standard.

SYMBOLS USED

c!' concentration of the granulating liquid (kg/n?)

b, diameter of the apparatus (m)

a mean granule diameter (m)

d particle size or sieve pore size (m)

T, ' temperature of input air (°c)

v total particle volume of material to be granulated (m3)
V! volume of granulating ligquid (m3)

V; atomizing air stream (kg/sec)

V'/V relative amount of granulating liguid (vol.%)

! feed rate of granulating liquid (kg/sec)
Y height of the fluidized bed (m)

Y. minimum bed height (m)

LS minimum starting bed height (m)

Y/Ym degree of bed expansion (dimensionless)
Y height of the dense layer (m)

Y distance of the spray nozzle, as measured from the air

distributor (m)
a angle of spray (degree)

—

E average porosity of granules (dimensionless)
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kg2 7. Ormbs, K. Pataki and B. Csuké&s

PE3HME

B uenax NpOBHTHPOBAaHKH yCTawoBOK, FP3HYAMP Y IoUM X nocpegcTeom
MCBBLOOKHMEHHOrG CAOA, W ONPBABNBHHA ONTHMBNbHEX YCAOBHH HX padoTu
B8KHD 3HATL HAHOD ABHCTBHE OHA3WBAKT TBXHONOrHYBCHHE M annapaTyp-
HHE XBPAKTEBPHCTHHH HE GHSHYBCHHB CBOWCTBA  05pAa3yKILMXCA rpadyn. B
MTepaTyps BCTPBYAETCA NHWL HB3HAYMTENLHOE 4wWciao paboT, noapotHo
FIHHMBIOWHXCR STHM BONPOCOM. ABTOPH JAHHON CTATbHW H3 OCHOBAHWM SHC-
MEPHMBHTOB, NPOBBABHHEX B YyCNOBHAX Na60OPaTOPHOIrO peaxTopa nepHogn-
MBCHOMO ABHCTBHA © NCBRACOMHMEHHWM CAOeM, ONPBABNHAKM OTHOWEHKE MH—
HHMAALHOH BHCOTH CROA/K AMAMBTPY CROA, 38BHCHMOCT. pasmMepa cnof oT
CHOPOGTH raaa, a TauWe TO, B HAHON CTBNBHM BAHAST wa pH3IHYBCHHE
CBOWCTBA rpaHyn BHA 803AyX0OpPACNpPEABNKTENLHON MAACTHHE W PACCTORHME
PBCNEAHTBALHON FON0BKK OT 3TOH NNACTHHL. Hpome Toro, asTopw cpas-
HHNK CBOH 3SKCNBPHMEHTANLHEE PB3YALTATH C COOTBETCTBYUMMKH  iMTepa-
TYPHEMH [aHHLMH, W fanee NPeACTEBHAH ONTHMANLHLE 3HAYEHHA 8HWBYMNO-
MAHYTHX NBPEMBHHEX,
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