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Carbon monoxide increases the activity of cata-
lysts composed of tungsten and molybdenum halide com-
plexes and EtAlCly for the disproportionation of ole-
fins. Hexacarbonyls as final products and halo carbo-
nyls as intermediates were isolated from the reaction
mixtures.

INTRODUCTION

The disproportionation of olefins has undergone a very fast
but contradictory development during the last 12 years since the
first patent application. The heterogeneous propylene disproportio-
nation is already at present an industrial process, while the dis-
proportionation of longer chain clefins will still remain at the
level of laboratory experiments for probably a long time, because
of the simultaneous double bond isomerization leading to a low
selectivity of the reaction. An increase of catalyst selectivity
by the blocking of acidic centres is accompanied with a rapid

decrease in activity [1, 2].

The development of the homogeneous catalytic process seems
to be somewhat faster; the disproportionation of terminal and in-
ternal olefins has been achieved in the last few years [3, 4, S51].

Numerous new catalytic combinations and metals (Ti, Rh, Fe, Co,



Ly L. Bencze, A. Rédey and L. Marké Vol. 1.

etc.) [6, 7] have been reported, in addition to those based on mo-
lybdenum and tungsten which were applied from the beginning. How-
ever, although a large number of active catalysts are already
known, only a few investigations on the catalytic mechanism have

so far been reported.

Following the first successful disproportionation experiments

a trans alkylidenation mechanism was proposed for propylene dis-

proportionation
CH3 - CH = CH; CH3 - CH CHjp
CH3 - CH = CH, CH; - CH CH,

This general scheme was confirmed by the disproportionation of
2—propene—14C [31. However, it still remained a problem, that the
"quasi cyclobutane intermediate" state proposed for this reaction
requires thermaly forbidden electron transitions according to the
HOFFMAN-WOODWARD rule [10]l. This problem could be solved by the
assumption that since the trans alkylidenation has to take place
partly or entirely within the co-ordination sphere of the transi-
tion metal, the d orbitals of the transition metal also have to
be considered in these calculations. The Hoffman-Woodward rule ex-
tended in this sense was found to be applicable for the dispropor-
tionation of olefins: the process can be described by the combina-
tion of the d orbitals of one transition metal and the pi orbitals
of two olefins {111.

The homogeneous catalysts used for the disproportionation of
olefins are generally composed of a transition metal compound
{such as WClg) and a cocatalyst such as EtAlCl; or BuLi [12]1. The
cocatalyst probably functions partly to produce free co-ordination
sites which can be used by the olefin molecules and partly to
maintain the necessary electron concentration for the reaction.
According to the proposed mechanism, at least two co-ordination
sites are required on the transition metal. The experimental ob-
servations that disproportionating activity is shown by catalyst
combinations with an Al(Li)/W(Mo) ratio of 2 2 are in accordance
with this theory. i
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Very little is known about the formation of the catalytically
active species. Suggestions for this process were first made by

MENAPACE et al. [12] for the two component WClg + BuLi catalyst

system:
wlcl, + 2 RLi+ — w!VR,Cl, + 2 Licl (2)
-2 ®

wiVr,c1, ——— wlVel
l n 2 olefin (3)
L 2 olefin , va(olefin)ZClu

-2 R
wiV(olefin),Cl, ~= W' 'Cl, + products (4)
. 1 2 new olefin

According to the schema above, the free co-ordination sites are
formed by the decomposition of dialkyltungsten tetrachloride. Fol-
lowing this the trans alkylidenation takes place by an intramolec-
ular transformation of the bis olefin complex. Some suggestions
were made regarding the oxidation and co-ordination states of the
transition metal in Equations (2)-(4), . but no experimental proof
was presented. The experiments described in this paper were direc-
ted towards the isolation of stable derivatives of these interme-

diates to elucidate some steps of the disproportionation mechanism.

RESULTS AND DISCUSSION

For all experiments cis,trans-2-~pentene was Chosen as model
olefin. Using CALDERON’s WClg + EtOH + EtAlCl; catalyst it was ob-
served that this was very sensitive to air and moisture, whereas
Ar, Ny, Hp, or CO and small guantities of PPh3y or pyridine did not

alter its activity appreaciably and CO even increased its selec-
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tavicy [131]. It was, therefore, concluded that CO, phosphines and
pzridine may function as ligands of the tranmsition metal in these

catalvtic systems.

In order to eliminate the moisture sensitive WClg at first
Mo and W compounds were sought that were not sensiiive to air and
which combined with AlEtCl, would give active ‘disproportionation
catalysts. When 2-pentene was added to the berzene solution of a
AlEtCl; and a ML;Cl,  Lype compound  {where L = Py, FPhy or
1/2 CoH,(PPhy)2: M = Mc or W) the olefin was consumed by a Friedel-
-Crafts type reaction for the alkyliation of benzene in a few mina-
tes and the disproportionation reaction conld nct be studied under
such  conditions [14]. However, using chloro benzene as a solvent
{(which is more difficult to alkylate than benzene), a homogeneous
master solution could be prepared which had the desired dispropor-
tionating catalytic activity and was not disturbed by the alkyla-
tion of the aromatic ringy. The activity of these catalysts siyni-—
ficantly increased under CO aad approached that of the CALDERON
system [157.

Investigating the WPy,Cl, + EtAlCl, + 2-pentene + chloro
benzene reacticn mixture by IR spectroscopy, a very strong, sharp
abscrption band could be observed at 1980 cmhl in addition to some
smallexr peaks in the Veo range. This strong band indicated the
presence of W(CO)g which was proved by the subsequent isolation of
W(CO)g from these reaction mixtures. The vield of W(CO}g reached
about 30 per cent and thus surpassed the yield of some of the pre-

viously known high pressure syntheses.,

By comparing the W(CO)g content and Lhe catalytic activity
of catalyst master solutions (Fig.l) it was shown that an increase
of W(CO)g leads to a decrease of activity. The increase of cataly-
tic activity under carbon monoxide could not, therefore, be attri-~
buted to the W(CO)g formed in the reaction mixture,but td tungsten
derivatives having oxidation states Dbetween IV and O. It was as-
sumed that the formation of the free sites necessary for co-ordi-
uwation of olefin (in the catalytic reactioﬁ) or carbon wmonoxide
(in metal carbeonyl formation) to the metal atom is a result of

alkylation {5) and the subsequent decomposition of metal alkylis (6):
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Fig.l. Yield of W(CO)g and disproportionation activity as functions

of the =&age of the catalyst master solution. o - yield of
W(C0)g; x - conversion of 2-pentere in 3 minutes reaction
time
ML,Cl, + 2 FtAlCl, ~+ MEtpL,Cl, + AlClgy (s)
MEt,L,Cl, —Seivent (S}, ML,Cl,S_ + 2 Et’ (6)

These free co-ordination sites can then be occupied either by

olefins:
ML,Cl,8 + 2 olefin == ML, {olefin),Cl; + n S (7)
or by carbon monoxide:

MLpClpS + 2 CO =~ ML, (CO),Cl + n S (8)

If olefin and CO is also present at the same time the following
eguilibrium must be taken into account:

ML,(olefin),Cly, + 2 CO ~* ML,(CO),Cl, + 2 olefin (9)

Such types of VIb metal-halo-carbonyls are already known. Some of
these derivatives (like L = PPhj) are "CO carriers® [16]:

M(PPh3),(C0),C1l, + CO == M{PPh3)2(C0)3Cl; (10)
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To confirm the probability of the above reactions ML, (CO),Cl,
or rather ML,{C0)3Cl, type complexes had to be detected during the
disproportionation reaction carried cut under carbon monoxide. Al-
though the formation of such compounds was observed in the WPy,C1,
containing systems, their isolation in a pure state failed.Efforts
were more successful in the case of the catalyst composed of
Mo (PPhj},Cl, and AlEtCl,:

Co

Mo (PPhj),Cl, + 2 EtAlICI, oTefin, solvent

Mo(PPh3),(C0O)3Cl, (11)

The isolation of these complexes supports the assumption that the
active catalyst combination contains a low (but not 0) oxidation
state transition metal atom having available co-ordination sites.
However, the formation of free co-ordination sites does not re-
quire the presence of olefins, since the appropriate halo carbonyl
complexes can also be prepared from the CO-treated catalyst master
solutions in the absence of olefin with good yield.

The halo molybdenum and tungsten carbonyls were prepared
previously only by the oxidative transformation of the correspond-
ing carbonyls. Our qualitative observations have been developed to
a preparative method which enables the preparation of halo carbon-

yls by reductive carbonylation with 30-3% per cent yields.

Based on these results, the method described above was also
applied in the study of the highly active catalysts derived from
WOCl, or WClg and AlEtCl, at a molar ratio of W/Al = 1/4. The for-
mation of intermediate unsubstituted halo carbonyls and W(CO)¢ was
also observed here. W(CO0),Cl, was isolated from these reaction
mixtures in the form of its stable triphenylphosphine derivative
W(PPh3)2(CQ)$C12. Molybdénum halides reacted similarly [171.

As a matter of fact, all of these results confirm the Mena-
paces hypothesis and complete it by the reactions occurring under
CO atmosphere:

Pphs\
W(olefin),Cl, 51%%1?;" W(C0)2Cl, —— W(PPhj),Cl, (12)
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EtAlCl,
W(CO)2Cly Syggrs— W(CO)2(olefin),Cl, (13)
+CO {| —~olefin
EtAlCl, PPhg
W(CO)g o W(CO)yCl, “dcetona” W({PPha)2(C0)aCla + CO

Carbon monoxide 1is generally known as a catalyst poison and be-
haves here similarly: it expels the olefins from the catalyst.
Despite this the rate of disproportionation is increased in its
presence, which suggests the M(PPha)z(CO)nClz (n = 2, 3) type com-
pounds ("the poisoned catalysts") formed in these reaction mix-
tures are also good catalysts in combination with EtAlCl, or AlClj;.
This assumption was confirmed experimentally: the mixtures of
MLZ(CO)nClz (where L = PPh; or AsPhy and M = Mo or W) and EtAlCl,
or AlCl; (Al/M = 4/1) in chlorobenzene solvent catalyzed the dis-
proportionation of 2-pentene present in a 2-500 fold excess of the

equilibrium olefin mixture within 3-5 min [18]7.

EXPERIMENTAL

General. All manipulations were carried out under Ar or CO
at room temperature. Hexane, benzene and cis, trans-2-pentene
(Fluka) were distilled from K-Na alloy, chlorobenzene and methylene
chloride {(Reanal) from phosphorous pentoxide before use. All were

stored under Ar.

Molybdenum and tungsten complexes were prepared from purum
WClg and MoCls (Koch-Light)(Fluka) as described in literature [19,
20). EtAlCl, was prepared from Et3Al and AlCl; and purified by
distillation [21].

The IR spectra were recorded on a double-beam Carl Zeiss

UR 20 spectrophotometer.
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Catalytic experiments

a) A solution (5 ml) of cis-2-pentene in n-pentane (1/1) and
0.05 ml EtAlCl, was added to a suspension of 29 mg WPy,Cl, in 5 ml
chlorobenzene. After 1 hour, the mixture was hydrolyzed and ana-
lyzed by GLC. Based on the guantity of cis-2-pentene introduced,
the reaction product contained 14.1 per cent cis, trans-2-butene,
45.7 per cent cis, trans-2-pentene and 27.3 per cent cis, trans-3-

~nexene. The rest of the olefins were converted to polymers.

b) Several parallel runs were performed with the above cata-
lyst under Ar and CQO. After a 15 minute reaction, the conversions
of 2-pentene ranged between 7-22 per cent under Ar and 48-51 per
cent under CO; since the equilibrium composition was reached under
carbon monoxide, the rate of reaction must have been rather high.
This was confirmed by utilizing even shorter reaction times:
conversion of 2-pentene was 40.6 per cent after 1 minute, 41.8 per

cent after 3 minutes and 47.2 per cent after 5 minutes.

¢} To study the connection between W{CO); content and cata-
lytic activity, a master solution was prepared from 300 mg WPy,Cl,,
0.9 ml EtAlCl, and 50 ml chlorobenzene. This was stirred under CO
and samples were taken at certain intervals. 5 ml of the sample
was given to 5 ml of a mixture of n-pentane and 2-pentene {1/1)
and the conversion of 2-pentene after 3 minutes reaction time was
used as a measure of the activity. The concentration of W(CO)g was
determined in another part of the sample by IR spectroscopy and an
extinction vs. concentration curve using the extinction measured

at 1980 cm_l.

d) WIC2H, (PPhy);],Cls, W[C,Hy(PPh;),1Cl, and Mo(PPhj3),Cl,
behaved similarly to WPy,Cl, under the conditions of a), b) and c).

e) 5 ml of a solution of cis-2-pentene in pentane (1/1) con-
taining 0.05 ml EtAlCl, was added to a suspension of 0.05 g
W({PPh3)2(C0)3Cl; in 5 ml chlorobenzene under Ar. A homogeneous so-
lution was formed. After 1 hour, the reaction mixture was hydro-
lyzed and GLC analysis indicated the presence of 13.4 per cent 2-
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-butenes, 49.7 per cent 2-pentenes, 26.2 per cent 3-hexenes and
traces of higherxr olefins.

Preparative Experiments

f) The master solutions made according to c¢) were steam dis-
tilled after 2-3 hours reaction time. M(CO)g (M = Mo or W) preci-
pitated on the wall of the condenser in the form of white crystals,
before an appreciable distillation of chlorobenzene has started.
Yield 10-30 per cent.

g) A solution of 0.05 ml EtAlCl, in 3 ml 2-pentene was given
to a solution of 190 mg Mo(PPh3),Cl, in 3 ml chlorobenzene. Rapid
disproportionation reaction was observed. Adding pentane (5-10 ml)
a precipitate formed due to the diminished solubility of the com-
plexes. This solid portion of the product was separated and dis-
solved 1in a small gquantity of acetone upon which 20-30 mg
Mo(PPhjy ), (CO)3Cl, precipitated.
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PE3IIME

OHnch yrnepoia 8 peanymu QHCAPONOPUHOHWPOBAHHA one¢unoe yBe-
AHSKBABT AHTHMBHOCTb HMCNONL3YEBMOIr0 HaTanNW3aTopa, COCTOAWBI O W3 ra-
NOFEHHAHEX HOMANEBHCOB Boab¢pama W MONMOLeHa M Ma EtAICLl.. U3 peaH-
YHOHHOHA CMBCH OHIM BHABNEHH B HAY8CTBE KOHBYHEX npogyaroa reHco-
KBpGOHHAE H B HAYEeCTBE HHTEPMERHEpOos ranoreHorapOoHH AL,
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