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The numerical values of parameter sensitivity
based on the data of the previous%y discussed experi-
ments and the practical wuse of these values are
discussed here.

The sensitivity of concentrations existing either
in liquid or in the gas phases were calculated on the
base of the Piston Flow (P.F.) model. In these calcu-
lations the values of the transfer coefficient of the
unit volume and the flow rates of the phases were
taken into account. A valuation method is presented
which can be used for the calculation of errors in the
determination of the parameters. Such errors are due
to inaccuracy in the determination of the concentra-
tions. The data of the parameter sensitivity are ap-
plied in the valuation of the effects of changes in
the operation of absorption columns.

Valuating the Axial Dispersed Plug-Flow (A.D.P.F.)
model, the numerical values of the sensitivity as the
function of both the mixing and mass transfer coef-
ficients of the phases are presented, and the approxi-
mate calculation errors of these data are given. A
comparison was drawn between the P.F. and A.D.P.F. mo-
dels wusing the sensitivity data calculated by the
mixing coefficients determined in a given experiment.

In the first paper of this series [1] an experimental method
scussed which can be used for the determination of the com-

concentration of phases existing in a packed absorption
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The mathematical description of counter-current absorption
was presented, based on both the P.F. and A.D.P.F. models. The de-
termined and calculated concentration distribution data were com-

oArec.

In the second paper, the parameter sensitivity of the models
7 two phase operation units was discussed and its method of de-

1 nation was presented.

he parameter sensitivity was defined by the partial change

sutic of the concentrations existing in the phases:
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7 %x. 15 one of the dependent variables (e.g. the concentration

s obscrsed component in the liguid phase), and 1= is the i-th

suerer {e.g. the mass transfer coefficient). Eg. 1. shows that

=<nsitivity of the j-th variable from the i-th parameter (ei i)
a7

mis  on the locus co-ordinate {z) and on the values of the

vdrameters. It 1s
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-1 this paper the practical use of the parameter sensitivity
:s discussed, the data of the previously published experi-

re utilized in the examples.

“ised on the P.F. model, the transfer coefficient (5w)i WAS

-.ated at given liguid and gas feed rates. Knowing these, both
.- tne ligquid and zas phases the sensitivity of the soluble com-
pwoent concentraticn was determined at different parameters [{au?,

‘-’: , ~.G;.
i'sing the A.D.P.F. model, similar calculations were carried

e
Cut. but here in addition to the *ransfer coefficient (Ru!. the

cI ©both phases (D; and DG) were also

P
i

axial mixing
t

B 1zed as paracctecs.

ften more expedient to write the sensitiv-
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The calculated values of the x(z), y(z) and ejli(z} functions
of three runs are presented in Figs.l to 6. If the volumetric feed
rate of the absorbent is 100 litres per hour and the flow rate of
the gas is 2,000 litres per hour, the value of the mean transfer
coefficient calculated by the A.D.P.F. model was (EE)i = 3.81x107°
one per second (StL = 2.3, StG = 7.6). The calculated concent-
ration distributions x(z) and y{(z) are presented in Figs. 1 and 2.
If the alteration of St numbers is caused by the variation of the
transfer coefficient, the sensitivities at different StL and StG
dimensionless values as the functions of the column height are
presented in Fig. 2, but in this case the St numbers change due to

the flux of the given phase.

The construction of Figs. 3, 4, and 5, and 6, are the same,
but they are valid for different working characteristics of the
column. E.g. Figs. 3 and 4 represent the conditions if the feed

L
per hour; and Figs. 5 and 6 if BL = 50 litres per hour and BG =

rates of the phases are B, = 100 litres per hour,BG = 6,000 litres

= 8,000 litres per hour.
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The data of the run characterized by the feed rates BL = 100
litres per hour and B, = 6,000 litres per hour were also evaluated
based on the A.D.P.F.model.In Table 1 and 2 the following data are
listed: the calculated dimensionless parameters, the concentration
distribution and the data of dimensionless sensitivities calcula-
ted at some parameters.

1. The Piston Flow Model

Based on the examination of functions presented in Figs. 1
to 6, the following can be stated:

If the changes of the St number are due to the alteration of
the (em)i then for the sensitivities being valid at the top and
bottom of the packed height, the following inequalities hold:

= e} >
ey st el’,'_(\,) o]
i

e. . = e, (1) < ¢C
2,8t 2,30 ) e
- - e

e = e icr > C
l,StG L2

e, . = e, 117 < C
Q,DtG 2,¢

The sensitivity data calculated by the use of StL or StG can

be transformed to each other:

e, .i0: = Y
1l - s D‘:T Kl
and
€210 U
It is also s+tatea that if StL > StG then the sensitivity
curves reach maximum in the range of O < z < 1, and if StL < StG
then they reach minimum; 1n the previous case €, o, and eZ,StG
and in the latter case e. .. and e, g4 Treverse their™ signs.
S ,St .
G

For the extreme vaiucs the following inequalities hold:
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|(e2,St)ms1l < I(el,St)maxl
or .
| (e

2,5t minl > l(‘1,St)nin|

Consequently, the sensitivity curves shaw that the sensiti-
vity of the dependent variables of the examined ' system changes
sharply along the packed height of the columm due to the altera-
tion of the parameter. There are also cases in which the concen=
trations existing inside the section show a marked change
~ due to the variation of the parameter and the concentratiQmng
existing at the top and bottom of the colymm - remain nearly the
same. The quantitative examination of this fagt will be discussed
later.

The St numbers also alter with the flow rates of the phases.

In this case e l(0) > 0 and e (0) < 0, moreover e, l(l) > 0 and
£ 3

e2’2(1) < 0. The sensitivitie;’zs the function of the z can also
have extreme values in the range of 0 < z < 1, i.e. it is often
the case that the cqpe@entration existing inside the packed section
changes more rapidly =+ due to the flow rate of the phases - than

it changes at the end of the column.

1.1. The Error of the Transfer Coefficient Determingtiop

Generally the experimental data are processed for the calcu-
lation of the transfer coefficients being valid in the given unit
volume of the absorber (Bu)i. This method was applied in the
previous paper [1]. The data published in literature were usually
determined as follows: the concentrations of the phases leaving
the column were measured, using these data, the driving force, the
mean driving force and finally the values of (Bu)i were calculated.
The calculated (Bw)i is the function of the concentration, i.e. if
the concentration determination can be carried out with a definite
error so the calculation of the {Bw)i is also accompanied by
another and dafinite error.
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It is assumed that the ekact inlet concentration of the
phases y{(0) and x(1) are known, but the camcentration of the pro-
duced liquid was analyzed with an error of three per cent. If the
sensitivity is known so the evalyation of the error is:

hlew,___lﬁ._é_g.oj_zhlst=__é.w—.moz (3)
: ) g, (0) (Bu)g UL stpey 4 (0)

vhere hy, . is the relative error (per cent) of the (Buw); de-
’

termination, and Ax is the absolute eryor of the coancentration

determimnation of the liquid.

E.g. takifig the data pré@sented in Fig. 5, where B/ = 50
litres per hour and EG = 8,000 1lityes per hour. The calculated

(o) po alue was 2.24 1073 (sec™l).

Correspondifiy with the given flow rates eni transfer coef-
ficient, the Sty = 2.7 and BtG = 1.12. Using the P.F. model and
the mentioned perameters and the boundary condicions of y(0) =1
and x(1) = 0, thé calculated value of x(0) is 0.885. If the latter
is @etermined with an error of three per cent, &x = % 0.0266. The
valye of the senmsitivity is el,l(O) = 0.0808, (c.f. Fig. 5). The
erzor in the determination of (Bu), can be calculated by Eq. (3):

i g 02286 -
hl,Bw ¢ BpETT i—%TTS—ﬂ i 100 # ¢ 12.5 per cent

Using the pnraneteti of the same run, the concentration of
the exit gas phase is analyded and worked mp in the calculations
#o0 that the different error values can be obtained, again assuming
thrae per cent g¥ror in the sampling and gas analysis.

it

Since e2,1(1) «D.033%, the error is

RI,EN = —g -y 100 = % 21 per cent

In the emsamined casa, the determination of the concentrations
can be carried ocut with the same accuragy when either the liquid
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or the yas phases are analyzed. The error of the transfer coeffi-
clent is less 1if the calculations are based on the concentration
data of the liquid phase. This fact is to be taken into account in

the experiments.

hl,Bw and hZ,Bm

are listed in Table 3. The data in Table 3 show that the errors of

The error values of all the three runs

(Bw)i values are often higher with an order of magnitude than the
errors of the concentration determinations. The selection of the

examined phase also plays an important role.

As previously mentiocned, the values of the sensitivity depend
on z and they can also reach extreme values. This deserves atten-
tion if the (Bm)i values have to be determined. E.g. if the feed

rated are B, = 50 litres per hour and B, = 8,000 litres per hour,

L
the sensitivity

G
[el St(z)] at z = 0.5 reaches maximum. The sensi-
»
tivity 1is now ey gy (0.5) and this is analyzed with an error of
3 ;
three per cent, the calculation of (B“)i results in a value which

has an error = 5 per cent compared to the previously men-

hl Buw
tioned 12.5 per cent error of the same value.

It was menticned in the previous paper that the concentra-
tions of the phases were simultaneously determined at different
heights of the packed absorber. These data were equally used in

the calculations.

If the mean value of parameter sensitivity is calculated as

follows

where i is the number of samples and similarly as above, the

mean concentration is

x(4i)
1

z 1
x = =
n

KI. M

3

and the error of the (E:)i calculatten can be evaluated. E.g.
taking the data of Fig. 5 where x = 0.531 and y = 0.866 and él 1
- -
= 0.086, as well as e, | = 0.0125. If the calculation of (Bw)i is
.
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based on the 1liquid concentration data and the analysis was car-
ried out with an error of three per cent, the (EZ)i value can be
estimated with an error of ten per cent. The error is definitely
higher, 73 per cent if the gas concentration data are the basis of

the calculation.

The results of similar calculations of the other runs are

listed in Table 3.

1.2. The Effect of Flow Rate Changes on the Solute Concentratiof
of the Phases

It is assumed that in a given running condition of the ab-
sorption column the liquid feed rate is altered with AvL. Now the
concentration change of the exit phases have to be estimated. The
L number.
The relative alteration of the liquid concentration can be calcu-

liquid feed rate change AvL causes a AStL change of the St

lated as follows:

Ax (o) ASt Stp ASt,
= e (0) —= = e l(o)
x(o) ’ x(o) St

x(o)

Using Fig. 6 the deviation of Ax(o) can be determined. It is as-—

sumed that StL changes with ten per cent:

ax(o) 2.7
= 0.11 -
x{o) 0.885

* 0.1 = 0.0336

i.e. the liyuid concentration changes with 3.36 per cent. If the
flow rate of the liquid phase increases with ten per cent its con-
centration at the exit point of the column decreases with 3.4 per
cent.

The data of an other run were processed, here the flow rates
of the phases were BL = 100 litres per hour and B, = 6,000 litres
per hour, and the error was 6.15 per cent.

G
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Al

The concentration of the gas phase depends on the liquid feed
rate. Similar calculations can de used for the determination of

the gas phase concentration change effected by the liquid load.

2. The Axial Dispersed Plug-Flow Model

The sensitivity data of liquid and gas phase concentrations
are listed in Tables 1 and 2. These data depend on the param-
eters used in the A.D.P.F. model concept, and refer to the param-

eter values of the given run.

In Fig. 7 the sensi-
X tivity data e 1 and
r

e
_Bx . 2,1
1 a(sth 1,1

are presented, both the
. P.F., and A.D.P.F. models

0.04 4 were used in the calcula-
- tions of these data. (The
characteristic phase flow
0.02 rates of the run were B =
-1 = 100 1litres per hour and
0 B; = 6,000 litres per hour).
T z Al
0.5 1.0

It can be seen from
the data that the A.D.P.F.
~0.02 model is less sensible if
the St number changes, i.e.
the transfer coefficient

_ )
0.08 {9 e 1 calculated by the A.D.P.F.

a(sth)

model is less accurate.

. The sensitivity data
Fig. 7. The comparison between sensi-
tivities «calculated by the Piston
Flow model and A.D.P.F. model. oned Tables are dimension-~
B, = 100 litres per hour;

Bg = 6,000 litres per hour;
7 P.F. model (St, = L.08) sitivity data are rela*ed
TS~ A.D.P.F. model (st = 5.96)

listed in the ‘above menti-

less. In this case the sen-

to the real parameters which
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are not dimensionless. E.g. the dimensionless sensitivity of the

liquid concentration at locus z = 1 is as follows (c.f. Table 2):

dx (Buly
= 1
E1, (gu) () TET,| AT T 00
lz=1
The (Bw); value in the given case is 5.82x107 3 (sec_l) and x(1) =
= 0.086, the sensitivity is:
dx 0.086
e = = 0.661 + —="=— = §9.75 sec
1,(8u)y d(Bw)D S.8ox10"3

z=1

Similarly to the method discussed concerning the P.F. model,
the data of the above mentioned Table can be used for the evalu-

ation of the calculation accuracy.

2.1. The Estimation of the Error Caused in the Determination

of Transfer Coefficient

It is assumed that the absorption column is working, and the
characteristic parameters are those listed in Table 2. The flow
rates and concentrations of the inlet phases are known. The con-
centration of the outlet liquid is analyzed. This analysis can be
carried out with an error of three per cent, i.e. Ax/x(0) = 0.03.

Knowing the sensitivity, the error caused in the calculation of

(Bw)D is:
E ; C) = 0.06¢2
l,ksw\D( ). 062
and
A(Bw)D 0.03

{Buw), = = 0.366
The three per cent error in the determination of the liquid

concentration gives an error of 36.6 per cent in the calculation
of (em)D.
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The data listed 1in the mentioned Table show that
i : .
125 (gu) |>|El,(8w) | and therefore it is advantageous to base the
(Bm)D calculations” on the gas phase concentration data, in the

latter case the error is less (29 per cent).

The knowledge of the sensitivity is useful in the different
fields of the practical work, e.g. the efficiency of the absorp-
tion column can be calculated. It is assumed that the packing of
the column is exchanged and another is used which has greater spe-
cific surface area, so the (Bw)D is increased by ten per cent. If

the other parameters remain constant, so:

bx = E (0) » 0.1 = 0.082 - 0.1 = 0.08
b4 220 1,B8w

and
Ay| = E (1) + 0.1 = -0.104 + 0.1 = -0.01
Vo z=1 2,Bw

consequently, the ten per cent increase in the packing surface

area gives only one per cent growth in the column efficiency.

8}
[\S}

The Practical Application of the Sensitivity Concept

Based on the Mixing Coefficients

The sersitivity data based on the mixing coefficients are

also listed in Tables 1 and 2.

It can be seen that the sensitivity data valid at the given
parameters change their values with one or two orders of magnitude
along the length of the packed column. This refers to the fact
that the concentration changes differently along the column due to
the mixing. The greatest values of the sensitivity data in the
mentioned Tables are those which are valid at locus z=1. In the
circumstances given in Table 2, the mixing coefficient of the
liquid has a marked influence on the concentration of the exit gas
and the effect of the gas mixing coefficient is low. Regarding the
data 1listed in Table 1 the same conclusion can be drawn for the

concentration of the exit gas.
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Similarly to the above discussed method, the mixing coeffi-
cients can be applied for different valuations of the column.These
are not discussed here in detail. It is merely mentioned that if
the values of the mixing coefficients have to be calculated with
the data listed in Table 3 and with the data of the concentration
determinations, and the analysis can be carried out with an error
of one per cent (at locus z = 0), the results will be + 0.8 times
the liquid mixing coefficient value and + 2.5 times the gas mixing
coefficient wvalue. It is evident that the determination of these
data has to be carried out with other methods,e.g. the examination

of the residence time distribution can be used.

The data in Tables 1 and 2 show equally that the Pe numbers
are high, i.e. the coefficient of the second order differerntial
quotient ccntaining term of the A.D.P.F. model is higher compared
to the coefficients of the other terms. If tne term of the axial
mixing is neglected, the error of the concentration values has to
be valuated. (The other parameters are unchanged.) This valuation
can be carried out with the data presented in Table 1. The dimen-
sionless sensitivity values related to the converse of Pe numbers

were calculated at locus z = O:

ox 1/Pe
E (0) = = 0.013;
?,1/Pe o, ’
L okl/PeL) 220 x(0)
El,l/PeG(O> = 0.00k; Ez’l/PeL(l) = 0.228; Ee’l/PeG(l) = 0.036
The alteration of the concentration can be expressed as fol-
lows:
l/PeL 3x l/PeG dx
Ax = x[ + ] (L)
x a(l/PeL) x a(l/PeG)
and
l/PeL dy 1/PeG 3y
&y = vyl + ] (5}
¥ a(l/PeL) y 6(1/PeG)

It is a i = = =
ssumed that D, and D, are zero, i.e. Pe, PeG '

so the Piston Flow model is valid. In this case:
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and using Eg. (4) and

Ax(0) = 0.819 +{0.013 + §.00%) = 0.01%4
and
A1) = 0.098 -(D.228 + 0.036) = 0.026

and the mean value is:
Ax (s} + ay{1)
2

The results of the above calculation show that the deviation
between the concentrations calculated by the use of the A.D.P.F.

and P.F. models is in agreement with the previous experience [1].

SYMBOLS USED

ej,i parameter sensitivity

P parameter

z co-ordinate of locus (dimensionless)

Ej,i parameter sensitivity (dimensicnless)

v linear flow rate of the phase (metres per second)

{Bw). transfer coefficient related to unit volume and based on

the Piston Flow model (one per second)

(fo transfer cocefficient related to unit volume and based on
the Axial Dispersed Plug Flow model (one per second)

(Bw) transfer coefficient related to unit volume (one per second)

x concentration of the liquid phase (dimensionless)
y concentration of the gas phase {dimensionless)
St Stanton number {dimensionless)

Pe Peclet number (dimensionless)
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D axial mixing coefficient

B feed rate (litres per hour)

h relative error (dimensionless)

Ac deviation of the concentrations (dimensionless)
Indices

D A.D.P.F. model

L liquid phase

G gas phase

i P.F. model
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PE3riME

Ha ocHoeaHuu ganHux, NONYYEHHHEX C HCMNONL3OB3HWEM paHee . ony0-
NHHOBAHHEX 3HCNEBPHMEHTANLHEX METOg[oB, aBTopbl MOHA3siBaKT MeToas on-
peaeneHHUy HHCNEHHBIX EHGHBHMﬁ M NMpaHTH4YeCcHOoe MpUMEBHZHKE napamMeTpH-
YECHOW YYCTBMTENLHOCTH.

Ha OCHOBAHKH Mopent maeanwHord BHTEBCHEHKA P8CCHYUTRBANACE HOH-—
UBHTDAUWOHHAR YYyBCTBMTENLHOCTL ANA MMAHON M 330804 ¢a3 NO HO3bH-
UMEHTY mMacconepefadv, NPUXOARWEMYCR H3 eanHKUy 06keMa, W NO CHOPG-
CTaM $a30BLX NOTOHOB., ABTOpH yHa3weawT cnocol pacqeTa OwMbBHW, KO-
TOpaR QONYCHABTCR MNpW OMNpegefeHdwu NapamMeyDoOB BCABACTBUE OWHOHM W3-
MEBPDEHMA HOHUBHTPAUMHM, 3HAYEHUA fNapamMeTpPUYECHON YYBCTBUTEBNLHOCTH
MCNONL3YKRT ANA OUBHHM BAWMAHHA Tex H3IMEHEHHH, HOTOPHE _NPOMCXOAAT 8
pemume paboTH abcopbUMOHHEIX YyCTAHOBOK,

Hpome roro, @BTODE NDMBOART YHCABHHEE 3HAYEHWA NCOM3BBAEHHLIX
H38 OCHOBaHHK AWddy3MOoMHON MOge nu pac4eToR YHYBCIBMTEALHOCTW MO KO-
IBouyHEHTY mMacconspegadu 4 no Ho3dduuMeHTY nNepemMewMBaHWA BHYTpH
®a3, a Taume pacuercs NpUONUKEHHOr0 3IHATBHHA OWHBHKU, [ONYWEHHOW B
BBIMUCNEHUAX YHA3AHHBIX BEAMYUH, B YCNOBHAX NPOBRABHHONO 3HCHEpMMEH—
T8 Q&HHHE O YYBCTBUTEBNBHOCTM MO HO3d0uumMeHTaM nepeMewnBaHuA ganu
BO3MOMHOCTE CPABHUTL MOgBAL HAEANBHOMNS BLTEIHEBHMA C AUGDYINOHHOM
MOABNKI,
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