Hungarian Journal
of Industrial Chemistry
Veszprém
Vol.l. pp. 365-378 (1973)

DETERMINATION OF THE VIRTUAL RATE CONSTANT OF A

CATALYTIC ISOMERIZATION PROCESS
J. POR

(Research Institute for Technical Chemistry of the

Hungarian Academy of Sciences, Veszprém)

Received: September 26, 1972.

In connection with catalytic reactions, it is
the overall reaction rate that is defined in practice.
However, the processes proceed through a number of
steps and accordingly it is more preferable to consid-
er each individual partial process. An equation has
been derived for the determination of the virtual rate
constant of the reaction occurring at the internal
surface of the catalyst particles which also contains
the figures of mas- transfer (external and pore-diffu-
sion). A possibil ¢y is herebty given to interact at
the most advantageous point, in order to speed up the
overall reaction. The overall reaction rate is, at
test, equal to that of the surface reaction (if the
diffusion hindrance is eliminated) and consequently
the latter is preferably determined.

A muthematical estimation has also been derived
for the determinaticn of the mass transfer occurring
in the boundary layer around the catalyst particles.

INTRODUCTION

Catalytic reactlons CoCuUITIng

catalyst proceed through a number -f consecutive paritial procescos:
L]

the external

fusion).
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2. Diffusion of reactants and products within the pores of the

catalyst (termed pore diffusion).

3. Adsorption of reactants at the internal surface and desorption

of products from the external surface of the catalyst.
4. Reaction at the internal surface of the catalyst.

The "above-mentioned partial processes have been given a

detailed analysis in the literature [1, 2].

The overall reaction rate is determined by one or more steps.

The reaction rate 1is defined in the literature - in accor-
dance with industrial practice - by the following equation:
dx
r, =B —2 (1)
dw .

It is apparent from Equation (1) that the overall reaction

rate refers to the unit mass of the catalyst.

This approach undoubtedly very simple and accordingly it
simplified the industrial application; however, it is burdened by

a number of drawbacks:

- the effect of the individual partial processes upon the overall

reaction rate is not taken into consideration;

- it is valid only for a given catalyst bed, and in the case of a
change in any of the parameters of the catalyst bed, the results

of the measurement are no longer valid;

- no information is provided on the temperature dependence of the

reaction.

it seems more preferable to apply an approach in which the
partial processes are, one by one, taken into consideration. By
this way, 1t is possible to speéd up the rate-determining step
and thereby to modify the overall reaction rate in an advantageous
direction. For this purpose it is, however, necessary to know the
rate-determining step or steps.

i
From among the four partial processes described in the

foregoing it is only the rate of the surface reaction which is in-
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dependent of the geometric parameters of the catalyst bed and
accordingly its determination seems to be of paramount importance.
It is the rate of the surface reaction that determines the process
if the diffusion hindrance [3] has no role to play in the process.
Adsorption cannot be separated from the surface reaction, and
consequently an apparent rate constant is used,which also includes

the rate constant of the adsorption process.

It can be mentioned as a further advantage of the approach
that the empyrical formula of Arrhenius [4] holds for the surface
reaction and consequently it is possible to calculate the rate
constants of a whole temperature range, if the rate constants for

two different temperatures have been determined.

The method is preferably demonstrated on a catalytic isome-
rization reaction, where a gaseous component is transformed into

another similar one, without any change in mole numbers.

DESCRIPTION OF THE MODEL

Let us consider the following process:

The reactant c'(o) concentra-

X tion enters the apparatus at a point

x = 0. The molecules of the reactant

//’bOdy of diffuse into the interior of the ca-
apparatus

talyst particles, are transformed

there and return into the streaming

gas mixture of the apparatus, con-

/’__/anSTﬁi/_catalyst taining the reagent and the product

o [
30790 °a0d gases.
°°0: 0o ©
) . .
20 o ° x=0 The gas mixture continuously
becomes poorer in the reagent compo-
[4

1}

o nent along the "X" height co-ordi-
nate, and simultaneously the concen-
tration of the product increases in

Fig. 1 the bulk of the gas.
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The sum of the concentration of the product and the reagent
is constant, and consequently it is sufficient to follow only the

changes in the concentration of the reagent.

THE MATHEMATICAL MODEL

The mathematical model is given by the mass balances, as
formulated for the unit volume of the interior of the particle or
for the unit volume of the catalyst bed. A detailed description of
these will be omitted for the sake of brevity. The following sim-
plifications have been adopted in establishing the mathematical

model :

1. The mathematical model holds only for a stationary state, when
the concentration in a given cross section of the catalyst bed

does not change in time.

2. The concentration of the gas in a given cross section is con-

stant.

3. Radial diffusion in the gas is negligible compared to the con-

vective stream.

4. The catalyst particles are spheres of equal radii and they con-

tact each other only in a point-like manner.
5. The reaction within the pores is of the first order.
6. The process is isothermal.

7. The adsorption process is instantaneous, that is to say, its
rate constant may be incorporated into the apparent rate con-
stant of the surface reaction (in this case adsorption and

surface reaction have been regarded a single partial process).
8. The particles are hamogenous.

9. Any transformation on the outer surface of the particles is
negligible. (The internal surface of the particles is larger by
several orders of magnitude than the external spherical

surface.)
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With the above-described simplification in view, the system
of differential equations describing the process can be written by
means of the differen-
tial balance as formu-
lated for the catalyst
particle and for the

-
r. — Nr*'dr gas.

Fig. 2 shows a

W
™

YN
I

~ section of a spherical
~ catalyst particle, in
which diffusion and
reaction of the reagent

Fig. 2 takes place.

The material balance for a unit volume of the particle is

the following:

W(r + dr)2zeDd %; [e(x,r) + égi%jzl arl =

=k r278D 93&%;31 + 4 r?ndarake(x,r) (2)

Equation (2}, after simplifications and carrying out the

operations, can be written in the following form:

2
oD [8 cl(x,r) » 2 ac(x,r)] = ake(x,r) 13)
ar? r ar
After rearrangement:
L2 /
82clx,r) % dcix,r) _ &k e{x,r) (%)
ar? - 3r D*
where
D* = 3D (5)

The mass balance of the reacting gas is written for a unit

volume of the catalyst bed.
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The number of particles present
in the unit volume: n [pieces/L3]
depends on the dimensions and order
of the particles; this value is con-

stant for the whole bed.

. O o 0J 500
. dc(x,r) 00°0260 00 %0
N Aot = 3. YO AL/ —
s'hec (%) = b R2wAaxneDl .]r=R + o%quoé§¥gg°°og
() dx
v oARcvifet{x) + e lx) dx ] (6)
” dx
Egquation {6 expresses that the
decr:ise in concentration in the bulk c'(x)
ot  tne gas 1s brought about by dif-
fusicr oriented against  the surface

rig. 3

operations and simplifications, Equa-

eguations to ke
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Equations (8) and (9) are in connection through the value of
the concentration gradient arising at the external surface of the
catalyst particles.

Equation (2) is partial; but having a construction that it

can directly be integrated with respect to r"
The general solution is the following:
e(x,r) = = [A ch(Ja r) + B sh(Ja r)] (11)
where
a = sk (12)
D*

A and B are integration constants.

The values of A and B can be calculated by the boundary con-
ditions written for a particle.The boundary conditions are written
with reference ot the centre of the particles and to their ex-

ternal surface:

[M} _ =0 (13)

ar r=0
However, condition (13) cannot be applied, since in the ex-
pression %%, " js in the denominator and the expression is

meaningless if r = 0 is substituted. Instead, the following may be

written, as follows from the diffusion process [51:

1im rZ(g%> =0 (14)
r-+0

It is apparent that after multiplication by "r2", the deno-

minator does not contain "r".

The second condition is determined by the circumstances
prevailing at the external surface of the particle.

It may be assumed that the concentration of the bulk of the
gas 1is present at the opifice of the pores. (The value of the

mass transfer coefficient, kc, is assumed to be infinite.)
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In this case,
e’ (x) = e(x,R) (15)

However, if kc # «, the Newtonian boundary may be written:

In the case of kC = », Equation (16) becomes Equation (15). The
selection of the boundary condition to be applied may be done on
the basis of information given by fhe measurements described in
[6]. In some cases, the following calculation may be applied

instead of measurements:

kC may be regarded as infinite, if its value is greater by

two orders of magnitude than the value of D*[gségizl]r=R that is
to say
k >> Di[_ac_(i:r_)] (17)
c or r=R

Boundary condition (15) may be applied in this case.

The order of magnitude of the value of kc can be estimated
on the basis of [7] while that of D* on the basis of [8].

. No information whatever is available on the value of
[QEL%¢£l]r=R but it can be proved that even the greatest concen-
tration gradient developed along the axis of the catalyst bed is
smaller than the concentration gradient of the particle of c'(o)
concentration calculated with the assumption kc = » and placed
into an infinite environment. Accordingly, the gradient calculated
on the basis of this assumption approximates the real value of

[92i%;£l]r=R from above.

If this value is substituted into Equation (17) and the re-
lation is true, it is also possible to calculate with the boundary
condition (15) in the case of the really prevailing concentration

gradient.

With application of boundary condition (1u),

A= (18)
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By application of boundary conditions (15) or (16) and
Equation (11), the following equation is obtained for the change

in concentration along the axis:

- %[RJ; eth({Ja R) - 11x
(19)

c'(x)

c'(0) e

and
bk R Ja cth{(Ja R) - 1 x

¢ pe[RJa cth(Ja R)~ 11 + kR (20)

ct(x) et (0) e

Equations (19) and (20) contain the value of the virtual

rate constant, "k", in an implicit manner.

DETERMINATION OF THE APPARENT RATE CONSTANT "k"

Equations (19) and (20) describe-the changes in the concen-
tration of the bulk of the gas as a function of the height co-or-
dinate. The parameters used (geometrical data of the catalyst bed,
diffusion coefficient and mass transfer coefficient of the external
diffusion) are such that are either at our disposal or can easily
be determined [7, 813.

1f the concentration of the bulk of the gas, ¢'(x) is deter-
mined along the axis of the catalyst bed in a point of known co-
-ordinates (it is most preferable to choose the height of the ca-
talyst Dbed and the concentration of the gas leaving the system),
the value of "k" can be calculated with the following transcendent

equation:

Ja cth (V& R) (21)

[
0

where

_ ¥'elln ¢'(0) - 1n c'(x}3
L R2xn D¥*x

(22)

|+

if boundary condition (15) is applied, and
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viek [1n c¢'(0) - 1n c¢'(x)] 1
L = c + 5 (23)

LI R27nD#*x - D*ev'[1ln c¢'(0) - 1n c'(x)]

if boundary condition (16) is used in the calculations.

Equation (15) is solved for "a" and we have

ak = aD* : (2k)

Equation (24) gives the product of the virtual rate constant and

the specific surface of the catalyst particle.

A similar consideration can also be applied for the case of
non-spherical catalyst particles. The only difference is that the
differential equations are not written in spherical co-ordinates,
and the factor "b" in Equation (7), describing the geometrical pa-
ramaters, has to be modified.

Fig. 4 shows par-

ticles of cylinder and
"flake" shape. 4

The differential : :
equation for cylindrical ~ | :
. . |
particles is the follow- I @ A==
ing: | ///
= 13
32c(x,r) + 1 8(x,r) _ 2R 4]
ar? r dr
_ ak . Fig. 1&
= ow c(x,r) (25)
whereas for "flake"-shaped particles it is:
2
cx,2) = %% cl(x,z) (26)

dz2

In the case of cylinders, the mass balance of the bulk of the gas
is the following:

de'(x) _ a(x,r)
dx - - bcylinder t or ]r=R (27)
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where

_ 2 Rxf nD* (28)

bcylinder ev!

and in the case of "flakes"

dc'{x) _ A(x,z)
3x = - Priake =%z ]z=% (29)
_ 2 efnD*
Prrake T \ (30}
v
Mass transport - occurring only at the superficies of
the cylinder and at the e.f plate of the "flake" - was taken into

consideration when deriving the equations. This omission causes
the values of "b" +to be taken into account at a value lower than
the real one. On the other hand, when describing the model it was
assumed that the particles touch in one point only, that is to say,
touching of the particles does not decrease the surface area
available for diffusion. The errors arising on account of these
two omissions influence the value of wpt in an opposite sense, and
consequently it is not likely that it causes any considerable

deviation in the calculated values.

SUMMARY

The virtual rate constant of catalytic isomerization was
determined, with certain suppositions and with the application of
the geometric properties of the particles.

In cases where the influence of the external diffusion re-
sistance and that of pore diffusion does not manifest itself, the
rate of the surface reaction is equal to the overall reaction rate.

The rates of external diffusion and pore diffusion were also

taken into account, and consequently it is possible to select the
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rate-determining process. A possibility is given hereby to inter-
act at the most advantageous point in order to attain a more fa-

vourable overall reaction rate.

The empyrical formula of Arrhenius holds for the virtual
rate constant calculated in accordance with the above, and con-
sequently it is possible to determine the temperature dependence

of the reaction from two measurements.

SYMBOLS USED

a specific surface of catalyst particle, L-l

c(x,r) concentration in the interior of the particle, mole/mole

c'(x) concentration in the bulk of the gas, mole/mole

k virtual rate constant of the surface reaction, t_l

kC mass transfer coefficient of the external diffusion,
mole/th

n number of particles present in the unit volume of the
catalyst bed, L—3

r radial co-ordinate, L

T, overall reaction rate, mole/Mt

v linear gas velocity, L/t

w mass of catalyst, M

z linear co-ordinate in case of "flake"-type particle, L

x height co-ordinate, L

X, conversion, mole/mole

B feeding rate, mole/t

D*=9D effective diffusion coefficient, Lz/t

R radius of catalyst particles, L
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€ free surface fraction of catalyst bed, LZ/L2
9 porosity, L3/L3

In the signs, the internationally accepted dimension symbols

were used:

L length
M mass
t time
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P E3OME

MpH HOHTAHTHEX HATANMTHYECHHX PEaKUWA Ha NpaKTWHE OnNpeRens-
€TCHA BANOBAA CHOPOCTb peakuvu. Wmes B BrHly TO, YTO Npouyecc NpPoWc-
X04WT B HECHONIBKMX CTYMNEHAX, OHaswBaeTcs uenecoobpasHeM  0OTAenbHO
Y4HTHBATL 4ACTHYHWe Mpoyeccs. Bueegeda popMyna gnA  onpegsneHua
HOHCTAaHTa BUPTY&NbLHOH GHOPOCTHM peaxuum, NPOMCXO4AWEH Ha MOBEPXHOC-
TH rpaHyn Katanu3aTtopa, Cogepwauero XapanTepHee faHHbe Macconepe-
AAa4M NOPOBOA Anddyauu. Tauum 06pa3oM, [JAETCA BO3AMOMHOCTL BMBWM-
B4TLCA C uUENbI0 YCHOPEHWMA BANOBOCQ NpoyEcca Ha camom noAx048uem
mecte. Onpegenenne cHopacTH MOBEPXHOCTHON peaHuuH RBAAETCA Ueneco-
06pa3sHeM, BEAL CHOPOCTL BanoBOY PEAHUHKM W B ONTHMAALROM cay4ae
(Mpw npexpaweHmm OHPOYSHOHHOrO TOPMOMEHHA) MOMET [AoCTHraTe 3Hade-
HWA nocnegHen,

AeTopoM fuwna suBegeHa PacueHxa gna onpefdeneHWR macconepegayu

TPOMCXOAAWEH 8 FPaHMYHOR NABHHE BOWpYr rpaHyn Havtanusarvopa.
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