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Fluid mechanics in spouted bed processes are
dealt with. In an air-water model the pressure drop,
the liquid@ content and the recirculation rate of the
system are studied as a function of the gas flow rate
and the design characteristics of the apparatus. In
addition to the description of the experimental appa-
ratus, test methods, and characteristic results are
given. On the basis of the estimated data, the deriva-
tion of equations for the pressure drop, recycling
rate and liquid fraction in the apparatus are aimed
at. The numerous data show that the measured values
agree well with the values calculated by the derived
equations.

INTRODUCTION

Many kinds of the two-phase gas-liquid flow are known in
practice. The flow of gas-liquid systems can be varied depending
upon the direction of the flow, and the physical state of the
gaseous phase, etc. In the present work, such a liquid-gas flow
was investigated that was directed from the bottom to the top of a
tube where the 1liquid is drawn in an inserted tube by a gas

filowing with high velocity through a nozzle and where the relati-
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vely small residence time of the two-phase flow can be set practi-
cally at any value by an internal 1liquid recirculation. In con-
trast to the two-phase flow in a tube, where the feed rates and
the ratio of the phases are freely selected for both phases, in
the studied 1liquid--spouted bed system the flow of the liquid
phase was determined by the system itself, i.e. it depends upon
the amount and velocity of the liquid drawn in, the geometrical
circumstances and the gas velocity. From this important difference
it follows that the relationships derived for the calculation of
the flow characteristics of gas-liquid systems cannot be applied
without the relationships for the liquid amount and the velocity
of the liquid, even if they are also valid for the spouted bed
system.

Several equations were derived on the basis of the main
variables for the calculations of the characteristics of the two-
-phase flow [1, 23. All of these have the inadequacy that they
refer only to a certain type of flow, to gases of a given density,
some 1liquid flow rate interval, and a given tube diameter, etc.
There is no general relationship such as the coefficient of fric-
tion and Reynold’s Number diagram which is so useful at the calcu-
lation of the single phase flow. Provided the flow processes and
all the physical and geometric properties of the system are known,
even the best correlations provide a pressure drop with an error
of about 25 % and this problem is solved inadequately in the case
of volume fractions.

EXPERIMENTAL APPARATUS AND MEASURING TECHNIQUE

The scheme of the apparatus built for the investigation of
the fluid mechanics of 1iquid-spouted bed systems is shown in Fig.
1. The apparatus consists of two concentric cylinders (3, 4). The
controlled amount of air (1) is introduced into the inner cylinder

{3) through the nozzle (2). The gas flowing with high velocity
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Fig. 1. Liquid-spouted bed. 1 - metering orifice; 2 - nozzle;
3 - inserted tube; U4 - column; 5 - clamping lever;
6 - water tank; 7-8 - pipe end; 9 - liquid separator;
10 - buffer vessel; 11 - cyclone; 12 - baffle plate

draws in the 1liquid from the space between the two cylinders and
carries it away. The gas-liquid mixture proceeds through the in-
serted tube (3) in a certain type of flow and after bumping into
the plate placed at the top of the apparatus (12) the liquid falls
back into the space between the two cylinders. In the outer space
of the apparatus the liquid moves downwards countercurrently to
the flow in the inner cylinder and it once again enters the inner
tube at the nozzle. The liquid droplets left in the gas are sepa-
rated in a cyclone (11) and the gas is carried off into the air.

The pressure drop of the system can be measured as the pres-

sure difference between the (7) and (8) pipe ends. This is the sum
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of the pressure drops on the nozzle and on the inner cylinder and
it is measured after the liquid separator (9) and damper vessels

(10).

The liquid amount in the inserted tube was measured by the
frequently applied intermittent method well known in literature.
In the lower part of the inserted tube, above the nozzle, a lock
was built in which allowed the free flow when open.The measurement
consisted of the abrupt closure of the bottom of the system, the
liquid collected above the lock was withdrawn and its volume was
measured. The standard deviation of the parallel measurements was

less than + 3 %.

The outer cylinder of the apparatus was assembled from column
elements, so the recycling rate of the liquid was measured by se-
parating the column into two parts with a plate built in between
two adjacent column elements, which had an opening in the middle,
with a diameter corresponding to that of the inserted tube. The
liquid collected above the plate was continuously withdrawn, while
liquid was added in an amount that corresponded to that of the
withdrawn liquid. It was not the volume of the withdrawn liquid
that was measured - although some controlling measurements were
also carried out in that manner - but the amount of the added
water fed under the plate into the bottom of the column via a ro-
tameter, needed to maintain a caonstant liquid level. Since the
identity of the pressure at either side of the plate was ensured,
the rotameter directly showed the recirculation rate.

THE EXPERIMENTAL CIRCUMSTANCES AND RESULTS

For the study of the fluid mechanics in liquid-spouted bed
systems, the overall pressure drop of the system, the pressure
drop of the empty apparatus, the liquid content of the inserted
tube, and the liquid recycling rate were measured as a function of
the gas velocity, the diameter and length of the inserted tube and
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the diameter of the nozzle, in the air-water model system. The
pressure drop of the empty apparatus can be measured as the pres-
sure difference between the (7) and (8) pipe ends, provided that
only air flows through the apparatus. During the measurements the
volume of the water in the apparatus, and the diameter and length
of the outer cylinder were constant (1.5 litres, 90 millimetres
and 1.5 metres). The gas velocity was varied in such a way that it

embraced the 0~90 metres per second interval.

The dimensions of the apparatus were selected for the expe-

riments from the following values:
the length of the inserted tube (millimetres) 400; 600; 800; 1000;

the diameter of the inserted tube (milli-
metres) 10; 153 2443 29;
the diameter of the nozzle (millimetres) 23 43 6; 83 105 123
143 163 18; 20.

The relationships derived between the studied characteristics
of flow and the variables will be summarized (the detailed experi-

mental results were published in a Doctor Technicus thesis [31):

The pressure drop of the empty apparatus increases in a
quadratic manner with the increase of the gas velocity and de-
crease of the nozzle diameter, and is independent of the diameter
and length of the inserted tube. The latter seemingly contradicts
the accepted relations known in literature, but taking into ac-
count the pressure drop of the empty apparatus is the sum of the
pressure drops established on the nozzle and on the inserted tube,
and the latter is in general smaller by several orders of magnitu-

de, then this contradiction is solved.

Between the overall pressure drop of the system and the in-
dependent variables, a relation similar to that of the empty appa-
ratus was found; because of the appearance of the second phase the
values of the pressure drop were naturally far greater.

The pecirculation rate of the 1liquid transfer by the gas
grows proportionally at the beginning, later it approaches a limit.
The growth of the length and diameter of the nozzle decreases,
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while the increase of the diameter of the inserted tube increases

the recirculation rate.

The liquid content decreases and tends +to zero when in-
creasing the gas velocity, while an increase in the length of the
inserted tube increases it. The decrease of the nozzle diameter
and the increase of the diameter of the inserted tube increase the

liquid content.

CALCULATION AND EVALUATION OF THE FLOW CHARACTERISTICS OF
LIQUID-SPOUTED BED SYSTEMS

On the basis of the experimental results, efforts were made
to attain the derivation of such relationships for the main flow
characteristics (pressure drop, recirculation rate, and 1liquid
fraction) that contain only the feed data and the data of the ap-
paratus, and do not contain parameters that are difficult to meas~-

ure, e.g. the liquid content.

To calculate the liquid fraction the adaptation of a rela-
tion previously derived in this Institute was tried. On the basis
of the theory of dynamic foams, SASVARI [4] derived the following
equation for the determination of the liquid fraction:

k
€p = - (1)
u_ + k
g
The reciprocal of Equation (1) is:
NS
e =5 (ug + k) (2)

It is obvious that there is a linear relationship between the re-
ciprocal of the liquid fraction and the gas velocity (ug)- The
value of k was determined from the following measured data.
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The liquid fractions were calculated from the measured liquid
contents by the following equation, derived on the basis of the

definition of liquid fraction:

(3)

According to the experimental results since the liquid content (V)
not only depended upon the gas velocity, but also on the dimen-
sions of the apparatus, the reciprocals of the 1liquid fractions
were plotted against the gas velocity having these variables as
parameters. Straight lines with nearly the same slopes were deri-
ved and this confirmed that the value of k is independent of the
diameter of the nozzle (df) and of the diameter and lenth of the
inserted tube (dB and HB). From the slope the value of k was found
to be 1.7 and so the liquid fraction was calculated by the follow=-

ing equation:

i, = —_1T (%)
u_ + 1.7
M3 o e
L 3 The comparison of the

measured and calculated data
showed that below a gas velocity
of 4 - 5 metres per second the
calculated values were invariably

1004 L 2
e smaller than the measured ones.

80+ The difference decreased with

the decrease of the length of

601 |1 the inserted tube. Above a gas
40 velocity of 5 metres per second

the agreement between the two
20 values is good not only in foam,

but also in film and mist flow.

T T

-50 0 50

=

In Figure 2 the distribution and
N% frequency curves of the diffe-
rences between the measured
Figure 2. The distribution and liquid fraction values and those

frequency of the liquid fraction j
data calculated >y Equation (4) are
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shown. It can be seen that the deviations have a nearly normal
distribution and their absolute majority is within the + 10 % de-

viation range.

At the calculation of the overall pressure drop of the system
it was assumed that apart from the outer recirculation space the
system can be regarded as a sieve plate column with only one open-
ing on the plate for the distribution of the gas in the liquid. In
the sieve plate column the pressure drop consists of the pressure
drop on the dry plate, the hydrostatic pressure of the liquid on
the plate and the dynamic pressure drop necessary to overcome the
surface tension. This latter can be neglected since it is smaller

than the others by an order of magnitude.

The overall pressure o
drop of the system (AP, ) was E NP
- o °
plotted against the sum of the > " &45
pressure drop of the " «ol.
dry apparatus (Ap) and the h .dgF
4000 1

hydrostatic pressure (APh).

The hydrostatic pressure
was calculated from the meas- 3000 fl.
ured liquid content by the . ")
following equation: 2000 >~

opy = Ly (5) 10T B

B

In Figure 3 it is shown that 1000 3000 5000
the sum of the pressure drop ap+aPy (kp/m2)
of the dry column and the
hydrostatic pressure is some Figure 3

what less than the overall

pressure drop of the system. The measured values are scattered
around a straight line of the slope of 1.2.Sc the overall pressure
drop can be calculated by the following Equation:

4P, = (ap + aP,) 1.2 (6)
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The pressure drop on the dry column depends upon the gas ve-

locity and on the diameter of the nozzle. So it can be expressed

as:
a1
= 2

where

df is the diameter of the nozzle (metres)

Uge is the gas velocity in the nozzle (metres per second) .

The constants were determined from following the measured

data.

The pressure drop of the dry column was plotted against the
square of the gas velocity in the nozzle, the diameter of the

nozzle was the parameter. Straight lines were obtained:

Ap = a u?
e
1

az = ap d

By
e

Which means that there is a linear relationship between the vari-

ables and a3 can be determined from the slopes. The logarithm of

3

e

the determined a3 was plotted against the logarithm of the diam-

Rt
o

eter of the nozzle and according tc Equaticn } the intercept of

the straight lines was a; and their slope gave a;.

It was found that

a, = 0.0057%

a; = - C.¢




360 Mrs. E. Mész&ros and T. Blickle Vol. 1.

r - Ef:HBYf (11)

In Equation (11) the only unknown parameter is the liquid
fraction, so it can be calculated. If Equations (4) is substituted
into Equation (11) an equation is derived for the hydrostatic
pressure drop:

AP = =.k_.H =—LH (12)
u

n = €elpYe 8Yr

g g
The comparison of the values calculated by Equation (12) and
those measured showed that their discrepancies were less than +10%
in about 50 % of the data. In real foam flows the calculated val-
ues were higher, in film-mist transition flows the values were
lower than those measured, which means that the best fit was ob-

served in film flows.

The substitution of the relationships for the pressure drop
of the dry column and the hydrostatic pressure drop Equation (10)
and (12) into Equation (6) gives an equation for the pressure drop

of the spouted bed system:

= _ -0.5 5, 1.7
AP, = (0.00576 dy udy ¥ ——— HByf) 1.2 (13)
u_ o+ 1.7

8

In Equation (13) the variables are the length of the inserted
tube, and the gas velocity calculated on the diameters of the in-
serted tube and nozzle. This means that without the knowledge of
the 1liquid feed rate the pressure drop can be calculated in ad-
vance. The comparison of the measured and calculated values showed
discrepancies that were less than +25 % in about 80 % of the data.

An equation was derived for the recycling rate (uf) on the
basis of the definition of the volumetric rate:

A, -3600 (14)

Ve T UpfpAy

In Equation (1l4) the liquid fraction is known from Equation
(4) so the unknown variable is the actual linear velocity of the



1973 Fluid Mechanics in Liquid-Spouted Bed 361

liquid (uf) which can be calculated using the relation between the
recirculation rate and the following measured parameters.

The linear velocity of the liquid can be calculated by Equa-

tion (15) from the measured liquid content and recirculation rate:

w w.H
u, = £ - —L.P (15)

Atef-3600 V+3600

The determined liquid velocity was plotted against the gas veloci-
ty having the data of the apparatus as parameters. Straight lines

with different slopes and intercepts were obtained.
The equation of the line:

up = 8u, + ag (16)

If Ug = 0 then:

ag = - ahu; (17)

where u; is the gas velocity where the liquid recycling starts.
The substitution into Equation (16) yields:
u

£ = By - ahu; = ah(u8 - u;) (18)

&) and u; in Equation (18) depend upon the following parameters:

a), = f(Hy, ap, dg) (19)
and
ug = f(HB, dy) (20)

The Equation (19) and (20) were solved with the following measured
data.

u; was plotted against the length of the inserted tube, at
constant values of the diameter of the inserted tube. The relation-
ship between the two variables is nearly linear, so the equations

for the derived lines are:

it 4y = 29 mm; u; = 5.4(Hy - 0.24) = 5.4 Hy - 1.3 (21)
dg = 2k-19 mm; u; = Lkdy - 0.25) = b Hy -1 (22)
dB = 15-10 mm; ug = 2.6(HB - 0.18) = 2.6 Hy - 0.5 (23)
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A relationship having both variables simultaneously could not be
obtained for u;.

The experimental data showed that éu is directly proportional
to the length and diameter of the inserted tube and it is inversely
proportional to the diameter of the nozzle. So the following equa-

tion was derived:
r
+ ag EE (2k4)

ag can be obtained if the aqdf product is plotted against the diam-
eter of the inserted tube with the length of the inserted tube as
parameter. The slope of the parallel straight lines obtained gives
ag and if the intercepts are plotted against the length of the in-
serted tube, straight lines are obtained once again, where the

slope is a, and the intercept is ag.

The following values were obtained for the constants:

ag = 0.05k, &, = - 1073, ag = 0.57x1073.
With these constants Equation (2u4) yields:
d H r
a, = 0.05h = - 1073 35 + 0.57x1073 Eﬁ (25)
f f f

Having au and GE Equation (14) is solved on the basis of
Equation (18):

a, = Eh(ug - ﬁ;)efAt'3600 (26)

where E; can be calculated by Equations (21), (22) or (23) depen-
ding upon the diameter of the inserted tube,and Eq and €¢ by Equa-
tions (25) and (u).

The comparison of the experimental recycling rate and those
calculated by Equation (26) showed that their discrepancies were
less than * 10 % in more than 50 % of the 900 data.
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To briefly summarize the results, empirical equations (Equa-
tions 4, 13, 26) were derived for the calculation of the flow cha-
racteristics of the liquid-spouted bed systems {pressure drop, vo-
lume fraction and recycling rate) on the basis of nearly 1000-1000
experimental data, which sufficiently describe the system. In
these equations, parameters that are easy to determine were employ-
ed (gas velocity, and design data), there are no variables that

are difficult to measure.

SYMBOLS USED

the cross section area of the inserted tube (m2)

[

== T - B S I

8, «.. & constants
2 8 s 2, 4
(kg force.sec”/m”) a, (kg force.sec™/m') ag (m/sec)
the diameter of the inserted tube (m)
the diameter of the nozzle (m)
the length of the inserted tube (m)
constant
the distribution of the data in percentage

the differences between the measured and calculated data in

S X " @5 A& AP

percentage
n the number of measurements
AP, hydrostatic pressure drop (kg force/m?)
AP, the overall pressure drop of the liquid-spouted bed system
2
(kg force/m”)

AP the pressure drop of the dry column (kg force/m2)

r, hydraulic radius (m)

u ‘actual liquid velocity (m/sec)

ug - gas velocity calculated on the cross section area of the

inserted tube (m/sec)
gas velocity calculated on the cross section area of the

gt
nozzle (m/sec)
u; minimum gas velocity needed for the start of the recircula-

tion (m/sec)
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liquid content (m3)
5 volumetric liquid feed rate or recirculation rate (ma/h)
Ye liquid density (kg force/m3)
€ liquid fraction
" 3.1415

Variables with a bar are calculated data; those without any bar

are measured ones.
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P E3OME

ABTOPEMHU HIYYAKTCH FUAPOGMHAMHHECHKHE YCNOBWA reiseposora cno-
co6a. May4awT nageHuwe pasnexun, COABPHAHHWE WHMOHOCTH WM CHOPOCTH
UMPHYNRUHM B 3EBHCHMMOCTHM OT CHOPOCTHM rasa W 384EHHHX HOHCTPYKTHB- °
HEX MnapamMeTpoB. ABTOpPW OMMCHBAKT SHCNEPWMEHTAaNbHYN YCTaHOBHY, Me-
TONE  W3MEPEHHA, XAPAKTEPHHE 3SHCMEPHMEHTANLHWE GaHHHE W ganee Ha
OCHOBE 3HCMNEPHUMEHTANbHEX QAHHEX NETAKTCA COCTAaBHIb YPaBHEHWA 4NA
BHYMCNEHKA NAABHUA Q0aBNEBHUA, CHOPOCTH UMPHYIRUMH W OGLEMHON [0AM
MUAKOCTH. [pHMEHAR 2HCMEPMMEMTAaNbLHEE JaHHbE OGONBLWOr0 YWCHAE ONMTOB
98TOpH NOHA3LBAKT COBMNALEHHE HM3MEPEHHLIX QaAHHHX C JaHHBMM, BHYHC-

NEHHLMH NO COCTABNEHHBM COOTHOWEHWAM.
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