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Correlations were derived for the determination
of the acentric factor and critical pressure of the
homomorphs of unsaturated normal hydrocarbons from the
molar liquid volume at & given temperature; with these
data the solubility parameter of the homomorph -~ that
is the nonpolar solubility parameter of the unsatura-
ted normal hydrocarbon - can be calculated by the
correlation given by LYCKMAN, ECKERT and PRAUSNITZ.

It is often necessary to describe the vapour liquid equilib-~
rium of various systems. In most cases this cannot be done without
difficult experiments. Several correlations were derived for the
estimation of vapour liquid equilibria. Most of these correlations
contain the solubility parameter introduced by HILDEBRAND and
SCOTT. In systems that also consist of polar compounds, these cor-
relations apply the solubility parameter split into polar and non-
polar parts. Therefore it is often necessary to calculate the po-

lar and nonpolar solubility parameters of polar compounds.

The regular solution theory of HILDEBRAND and SCOTT has been
applied to various problems of chemical engineering [1-4]. This

. theory contains two temperature dependent parameters for each ceom-
ponent, the molar liquid volume (V) and the solubility parameter
(&), which is defined as the square root of the configurational

energy per unit vclume.
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Since appropriate data for their evaluation are frequently
unavailable, several generalized vrelationships were derived to
estimate these two parameters at various temperatures. These
methods are based on a three-parameter theory of corresponding
state [5, 61].

The regular solution theory was applied to correlations for
vapour liquid equilibria. The first of the correlations available
is the equation of HILDEBRAND for the activity coefficient of com-
ponent 1 at infinite dilution in solvent component 2:

2
- Vi(s; - 83)
Iny; = ———m (1)
RT
This equation is applicable to regular solutions and has wide
applications in systems consisting of hydrocarbons. It is unsuita-

ble for systems involving polar or hydrogen~bonding components.

HILDEBRAND suggested and BLANKS and PRAUSNITZ further deve-
loped the idea of splitting the solubility parameter into two
parts [7, 873:

82 = 22 4 2 (2)

where A is the solubility parameter ascribed to nonpolar effects
and t is the polar solubility parameter. The value of A for a po-
lar component is set equal to the solubility parameter of a non-
polar molecule of the same size and shape, and at the same reduced
temperature as the polar molecule. The value of t is obtained by
solving Equation (2).The nonpolar molecule used in this context is
termed the homomorph of the polar molecule.

The splitting of the solubility parameter of polar compounds
nas proved to be useful. 2LANKS and PRAUSNITZ, WEIMER and PRAUS-
NITZ,later HELPINSTILL and VAN WINKLE, and finally NULL and PALMER
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However, these methods can be used only when the solubility
parameter and its two parts can be determined. LYCKMAN, ECKERT and
PRAUSNITZ correlated the solubility parameter and the acentric
factor and critical pressure for nonpolar or slightly polar com-

pounds. Their correlation is as follows [6]

e g e g
P

4
where Pc is the critical pressure, w is the acentric factor, G§°’,
Sﬁl’and Gﬁz’ are generalized functions dependent upon the reduced
temperature and given by the earlier mentioned authors in tables.

The part of the solubility parameter due to polar effects is
more difficult to determine. WEIMER and PRAUSNITZ, and HELPINSTILL
and VAN WINKLE provided charts for the calculations of A from
where A-s are obtained as functions of molar volume and reduced
temperatures. NULL and PALMER gave an equation for this purpose
which included constants determined by the regression analysis of
vapour liquid equilibrium data. The published charts are limited,
and so their readings can be rather inaccurate, while NULL’s equa-
tion can be applied in the cases of such compounds for which the

regressional constants were determined.

While predicting the vapour liquid equilibria of various
systems consisting of saturated and unsaturated hydrocarbons it
was necessary to split the solubility parameter of the unsaturated
hydrocarbons according to the polar and nonpolar effects. The
earlier mentioned charts were inappropriate for the purpose,partly
because of the difficulties in their reading, and partly because
their limited range in reduced temperature. The constants in NULL’s
equation were not available either, so the derivation of a new
method was necessary for the estimation of the nonpolar solubllity
parameter.

As mentioned earlier X is equal by definition to the sclubi-

lity parameter of a nonpolar molecule of the same size and shape,
and at the same reduced temperature as the polar molecule. The new
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method was derived on the basis of this definition. It uses the
correlation of LYCKMAN, ECKERT and PRAUSNITZ. First the acentric
factor of the hypothetic compound is determined,of which the molar
liquid volume at the given reduced temperature is equal to that of
the polar hydrocarbon. In possession of this acentric factor, the
critical pressure of this hypothetic compound can be determined.
Equation (3) can now be used to calculate the solubility parameter
of the hypothetic compound, that is the nonpolar solubility para-
meter of the polar hydrocarbon.

The acentric factor can be calculated by Equation (4) as a
funetion of the temperature and molar liquid volume:

w = -0.6567970503 + L.317033425%10™3 T - 9.552751262x10‘6 T2 +

+(6.948576691x1073 - 2.366410236x10™> T + 5.296188633x10~8 72) v +

-6 8 ~11,2,,2

+ (-7.300585551x107° + 2.980456572x10"° T - 7.607366k98x10~ L1 v
The constants of Equation (4) were determined on the basis

of 185 various molar 11qu1d volumes of the C C 1¢ normal paraffins

embracing the 25 - 105 °¢ temperature range by a least square fit

method.The values of the molar volumes were calculated according to
MEISNER [12]. His equation gives the molar volumes with a relative

standard deviation (characterizing the lack of fit) of 0.22 $%.

Taking into account the internal precision of the molar volume

measurements (+ 0.5 - 1.5 % relative) this fit is quite satisfac-

tory.

The average deviation in the case of the acentric factor was
+ 2.97 %.

In the knowledge of the acentric factor the critical pressure
and critical temperature of the hypothetic compound can be calcu-
lated by Equations (5) and (6):

P, = 57.96973602 ~ 113.7754867 w + Th.25657898 w? (5)

T = exp(6.6h0208073-o.027hh98h296/u + 0.1289717519 w + 0.2985 1n w)
(6)
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The constants of these equations were determined from the
data of the C2—C16
method. A comparison of the critical pressures and temperatures

normal paraffins [13, 14] by a least square fit

in literature and calculated by Equations (5) and (6) using the
acentric factors determined by Equation (4) showed that the avera-
ge deviation was + 2.88 % in the case of the critical pressure and
+ 2.80 % 1in the case of the critical temperature, taking into

account the earlier mentioned 185 data.

Hence the nonpolar solubility parameter of an unsaturated
normal hydrocarbon can be calculated by Equations (3)-(6) according

to the scheme in the Figure.

Read V,T
r

Estimate T

l

Calculate w

(Eq.4)
Calculate T
(Eq.6)
Yes
Calculate Pc
(Eq.5)
No l
Adjust T Calculate A
(Eq.3)
End

Schematic diagram of the calculation of A
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With the knowledge of the V molar volume and Tr reduced tem-
perature, a T temperature can be estimated, and the acentric fac~
ter of that hypothetic normal paraffin can be calculated, that has
a V molar volume at the selected temmerature (Equation (4)). With
Fquation (&) the critical temperature of this compound can be cal-
culated. It is now possible to find out what reduced temperature
corresponds to the estimated temperature in the case of the hypo-
thetic compound. If this value does not agree with the given redu-
ced temperature, the estimated temperature should be adjusted, and
the trials should continue wuntil the deviation is negligible.
Accepting the acentric factor that corresponds to this temperature
and the given molar volume,the critical pressure of the hypothetic
normal paraffin can be determined by Equation (5); the solubility
parameter of the hypothetic compound can then be calculated by
Equation (3) - which is equal by definition to the nonpolar solu-

bility parameter of the unsaturated normal hydrocarbon.

The method is applicable within the 25 - 105°¢C temperature
range provided that the acentric factor of the hypothetic compound
is neither less than 0.105 nor greater than 0.704. This method
provides a more precise calculation of the vapour liquid equilibria
of systems consisting of Cu unsaturated hydrocarbons. The results

will be published in a subsequent paper.

SYMBOLS USED

pressure atm.
gas constant

temperature (%K)

< 12 W

liquid molar volume (cm3/g mole)
activity coefficient
solubility parameter (cal/emd)l/2

> o <

nonpolar solubility parameter (cal/cm3)l/2
8 polar solubility parameter (cal/cm® )t/?
w acentric factor
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PE3WIME

ABTOpP COGTaBM/I COOTHOWEHWA, C MOMOWLI HOTOPHX MOMHO onpege-

Vol.

MUThb QAHTOP BUBHTPHHHOCTH M HPUTHYECHOE [aBlEHWE roMOMOpGa M3 MM~

AHOGA3HOrO MONAPHOra o6bemMa HOpManbHOro yrnesojopoga, npW onpege-

neHHoh TemnepaTtype. 3was gaHTop AUEeHTPHUYHOCTH M HpHTH4YECHOER
NleHue - C NpuMeHeHWeM ypasHeHua JluKMaHa,3rkepTa W Mpaycruuya
WHO ONpefenuTe NapaMeTp PacTBOPWMOCTH FOMOMOPGA, T.8. 4Y4acTo
METpa pacTBOPHMOCTH HEHACHWEHHOrO HOPManbHOro yrnesopnopoga,

NOBABHHYW MONADHBIMKH BAMAHUAMH .
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