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In order to give a theoretical treatment of the
mixing process, the formula describing the increase in
entropy of the mixing of ideal gases has been genera-
lized and the properties of the quantity thus obtained
are dealt with. The entropy of mixing seems to be
adequate to serve as a quantitative indication of the
degree of permixing.

The second part of this paper reviews the prac-
tical application on a simplified fluid mechanical mo-
del.

INTRODUCTION

Numerous problems were encountered in the Research Institute
for Technical Chemistry of the Hungarian Academy of Sciences in
which mixing was an important or even central problem. In the sur-
veyed literature it was found that the papers can Le devided intoc
two groups. 1In one group, mixing is of central intereszt, but en-
tropy is not mentioned at all. The remainder of the papers i
those which deal with entropy, but without mentioning its applica
tion in connection with the question of mixing [1]. It alsc bec
apparent during these studies that two types of state parameters

ame

are necessary for the description of the mixing process:
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1. a quantity showing how intensive the mixing process is,
and how fast it is, etc. This is a state parameter of

intensive type;

2. a quantity showing what changes occur during the mixing
operation, i1.e. the degree of permixing. This is a state
parameter of extensive type.

Undoubtedly a certain degree of arbitrariness cannot be
avoided in selecting the quantities of the two types; however,
qualitative properties can be stated in connection with both types
of state parameters. Such qualitative properties, in the case of

the quantity mentioned under 1. are the following:

a) In a domain being mixed, the rate of mixing is certainly
different in the various space elements, and consequently, this

type of state parameter must be one of the l o ¢ a 1 type.

b) If the rate of mixing is the same everywhere (homogenous
space), the state parameter should be greater if the material is

mixed faster and smaller 1f the mixing is slower:

The qualitative properties of the state parameter described

under 2. are the following:

a) The degree f permixing is characteristic of a whole do-
ne

o
main and is a xtensive measure.

b) The degree of permixing should “be higher if the material
distributicn 1s more uniform and lower if the material is

more 1nhomogeneous.

For example, a quantity of type 1. may be the current densi-

ty vector of the material to be homogenized or mixed.

A quantity of type 2. may be some guantity that is a
monotonic functicrn o¢f the deviation from the uniform concentra-
tion.

In the author’s thesis, a quantity has been proposed for the
characterizat tne degree of permixing.

fined by an i formula obtained by the gereraliz

entrcpy of m f ideal gases, f the deomain to be mi
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set of single connection and measurable. The density of the sub-
stance to be mixed is taken as p'(r,t). In this case, if the total
mass present in the domain is denoted by M, the quantity: 9% =

= p(r,t) represents the probability density of an individual par-
ticle, selected at random, of the substance. On the basis of the

latter function, the quantity can be defined:

s =~/ o 1n (pAV)dv; s = LLQ—%M (1)
(v) in v

y 1is the density of the substance being permixed, andl:

AV =

==

AV is, according to its meaning, the minimum volume in which the

substance to be permixed is present.
As to s, it can be shown that:
1. 0 < s < s
m

where Sh is the value of maximum entropy:

if the distribution is such that the substance tc be permired
and the carrier substance are perfectly separated from each
other, thus:

s =0

These properties offer a reason for using the guantity s for

the measurement of the degree of permixing. It would

lThe introduction of AV is not only a guestion o
c

dimension and zero point,but also that of zhoi
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preferable to show that s 4is in a monotonic connection with the
uniformity of distribution. However, this was shown only for a
special case, numerically, i.e. for the case of a normal distribu-
tion. It was found that in such a case there is a monotonic con-
nection between s and the scattering of the distribution:

CERN

do

1. GENERALIZATION OF THE ENTROPY OF MIXING IN THE CASE OF MORE
THAN ONE SUBSTANCE BEING MIXED

Formula (1) can also be generalized if it is not one single
substance whose degree of permixing is to be determined. Let us
suppose that a number n of substances to be mixed are present in a
domain V, each of them in a certain distribution, and let the den-

sity of the ith mixed substance be pi(r,t) i=1, 2, ..., n; in

this case if Mi is the total mass of the ith substance in the do-

main, the formula:

he)
Hem

=

i
is the probability density distribution of an individual particle

-th

of the 1 substance, selected at random.

The following generalization of Fermula (1) will now be con-

sidered:

s=-f J...J] (p1p2---p_) 1n (AV1p1AVop2..AV_p_)dVidVy ... av_ {2)
(V)(V) (V) 1P2 pn 1P1 2F2 nfn n

(n)

Equation (2) can be transformed by the known functional equa-

tion of logarithm:

n
in (AVipy --- sp V) = T 1n AV op, (3)
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By substituting Eq. {(3) into Eq. (2) we obtain:

s = Zé)(éilfé)(plpz."p") 1n (AVyey...AV p ) aviavy...av =
n
= ~f J...f z (9192'-'9n) 1n (AVipi)dvldVZ . an =

(v){v) (v) i=1

n

-2 J f...f (p1pg--.0_) 1n (AV.p.)avVidVy ... 4V (4)
i=1 (V) (V) (V) " ol "
The integrals under the sign J can now be solved by trans-
formation to multiple integrals, since the factors, which do not

contain Vi’ can be factored out of the integral according to Vi:

——L f f...J [flp1po.-.p_)1In(AV.p.)dV. 1dV,dV,..daV, 4V, . ..dV =
i=1 (V)(V) (V) (V) n i"1i i i-17 i+l n
; ]
= -J .J Lpye P P4y efy L S In{avie.)av.d-
(V)(V (V) 1P2- i~171i+1 n i=1 (V) i1 i
(n-1)
< dVydVy ... AV, LAV ... AV (5)

As a result of these transformations, the quantity si is

gained in an explicit form:

s; = —(,é)(pi ln (AViDi)) dVi (6)

s; is independent on the other variables, and can be facto-
red out from under the integrals. Accordingly, calculatien (5) can

be continued:

n
- Ls Joool (p1paeeapy 1051 00P,)
i=1 (V)(V) (v B
(n-1)
r A T
£ AV dVy ... dV, L@V L. ... dv

The integral can again be resolved to a multiple integral:
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n
S =-Xs. f
= v

p1dVy J podVa... f 0. av. J 0. av. oo [ p_av
¢ (v)

) (v)y Tt
The values of the individual volume integrals are all unity,

since the densities are normalized:

(f)pidvl =1 (8)
v

and as a result we obtain:

n

n
S = s, (9)

that is to say, 1if S - as defined by Equation (2) - 1is regarded
as the degree of permixing when a number of substances are simul-
taneously mixed, the additivity theorem is valid: the degree of
permixing, when mixing a number of substances, 1is the algebraic
sum of the various degrees of permixing.

It can be seen by a short calculation that the maximum pro-
perty shown for s in 1. also holds for S, i.e. S is the functional
of the functions op;, P2, ... Pt

S =8 [pl, P2y .- On] (lO)

ilowever, on the basis of formula (9):

=1

a
1

si[pi] (11)

S [0102...p ]l =
n
1

W

i

Consequently, if S is varied according to the variables of Py and

the condition of the extreme value is found, we arrive at:

§S = 0 (12)

If the supplementary condition is included into the method of va-

riation, the following eguation is obtained:

[N agie}

6si[p;] =90 (13)

i=1
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The G functions can be varied independently, and consequen-

tly:

[l e 3~

lési[pi] =0 > 6s,[p;1=0 (1k4)

i

However, the second Equation in (14) involves uniform dis-
tribution as a condition. It is apparent that the maximum value of
S according to (9) is not unity. If S is divided with maximal va-

lues of the sum of s,-s S will be normalized to unity.

In order to comprehend this, let us consider the quantity:

s; = -(é)pi in (AVpi) av (135)
. . S
Since: Py 2 0
and
o, € ——
Ay
consequently:
in (AVpi) <0
and thus:
s. 2 0O
1
The maximum value of (15), with the complementary cordition:
/ pidV = 1 (1€}
(v)
can be determined by variation calculus. The task 1s to determire

the extreme value of:
= - ) ot
¢ = JL- o5 1n {aVo,) + a91] v
The Euler-equation is:

39 _ 0
9p
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where

® = -p; In (aVp.) + ap, (18)
With the substitution of (18), (17) becomes:
- 1n AV -(1n oyt 1) +a =0

=e—(ln AV - 1 -~ a)

Py (19)

i.e. we have a uniform distribution which is independent of the

space co-ordinates.

The extreme value condition (16) determines a:

e-(ln AV - 1 - qa)

v =1

a = - 1n ¥V

{ln AV =1 - @) = 1n V

a = 1n AV 1

v

Substituting back into (19):

(15) becomes:

XA
v

<
<=

s, = - % / 1n (20)

i
The property mentioned under (1) has hereby been proven. At
the same time, it has also been shown on the basis of (1lu%) that S

has its maximum at:

1 .
Py =5 i=1, 2, ,
whose value is:
n AVi
Sy = - L1
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Accordingly, S is not normalized to 1 and its maximum value is SM’

0<s s SM

2. CALCULATION OF THE ENTROPY OF MIXING IN A GENERAL CASE

It is sufficient to show the entropy determination for a
single mixed component; if there are more components, the same
differential equation is valid on the basis of the same considera-
tion for all of the components as in the case of a single compo-

nent.

The system of equations, valid for the process of mixing, is

the following:

1. The equation of the conservation of mass:

8P 4 giv (pv - D, grad p) = O (21)

ot 1

where
v is the velocity distribution of substance
(metre.second_l)
. -1
b, is the effective diffusion constant (sq.metre-second )

p is the density of the mixed component (kilogram/cu.metre)

In a general case:

p{r,t)

]

g’ (22)

v = v(r,t)
where 1 is the position vector.
2. The flow equation pértaining to the rate space, in the
usual form of the law of the conservation of impulse:

Bp; - - _
—— 4+ Div (P + pv © V) = pf (23)
at
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where

Div 1is tensor-divergence (metre_l)

P is the stress-tensor (kilogram-metre_l-second_2)

7 is the vector of mass force (metre-second_z)

It is necessary to formulate an assumption in connection
with the stress terms and mass forces which give a more exact de-
finition of the nature of the carrier medium. As it is known, such
assumptions are the model of the ideal fluid or that of Newtonian

fluid, but it may also be any other model [3].

The form of Equation (23) is not identical to that of the
Navier-Stokes equaticn, since the divergence of the first term of
(23) and of the diadic tensor of the convective stream cannot be
eliminated by Equation (21),only in such cases where the diffusion
can be neglected. This assumption is justified in the case of com-
mon diffusion; however, if mixing is described by a diffusion-type
model, essentially it cannot be neglected. In the following, a
flow equation that also takes mixing into consideration will be
quoted. The mass forces and the stress-tensor will not be speci-
fied, the generalization will still be sustained. The left side of
Equation (23) is modified:

Y 4 Div (P + p¥ o ¥) =
at
=y 2 4, ov Div P + Div pv o v (2k)
3t ot -
but:
Div(pv o ¥v) = v div pV + p(¥,V o ¥) (25)

By substituting Equations (24) and (25) back into Equation
(23), the multiplicator of v van be collected:

- (0 . - - - -
v (22 & giv p¥) + o v, p(v,V o ¥v) + Div P = pt (26)

9t ft

The first term of Equation (26) is equal to zero, if the term ori-
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ginating from the diffusion stream can be neglected in Equation

(21):

90 + div pv = D,Ap 0 (a1)
ot
Should this not be the case, the simplification of Equation (2)

can be carried out only by writing Equation (27):

T 80 + p T4 o(¥,V 0 §) + Div P = oF (28)

it
Accordingly, the Navier-Stokes equation will be supplemented
with the first term of Equation (28).% It can be added that the
Navier-Stokes equation 1is also different from Equation (28) inas-
much as the medium to be mixed is not incompressible, and conse-

quently:
div v # O (29)

since the component being mixed is not present alone in the space
of streaming, but together with the carrier. With a view to a more
exact formulation, it should also be taken into consideration that
the velocity of the molecules of the cemponent tTo be mixed is not
the same as that of those of the carrier medium and accordingly
the law of viscosity ought to be taken into account. The system of
simultaneous equations thus grows further. Two Navier-Stokes egua-
tions are valid for the two velccity spaces, and a conservation
law of the type (21) for both substances, one of these (that per-
taining to the component tc¢ be mixed) also containing a diffusion
term. In the two equations of streaming, e.g. the Stokes law of
viscosity has to be taken intc consideration as a mass force. The
friction force has a greater influence upon the mixed component
than upon the carrier,and consequently it is sufficient to account

for it only in one case:

pT = - € 1nxr(¥ - ¥v')op (30)

*The attenation of the author was drawn to this fact by Dr.I.Férnyes,
for which the author expresses his thanks.
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where
! is the viscosity of the carrier medium (kilogram-se-
cond/sq.metre)
r is the radius of a particle (molecule) of the mixed
component (metre)
v,v' is the rate of the mixed component and of the carrier

(metre/second)

Furthermore, if the carrier medium is present at a high density of
the incompressibility condition is justified (as against the case

of the component being mixed):

div v' = 0
The equation of streaming becomes simpler. However, it is most
reasonable to accept Equations (21) and (28) as basic equations of
satisfactory accuracy, which are, at the same time, theoretically

accurate.

Summing up, Equations (21) and (28), or (23) are four diffe-

rential equations for the functions Ps Vis Vo, V3.

The pressure p (stress tensor) is to be regarded as known
data of the problem, furthermore the f mass force and the ini-
tial and boundary conditions. However, if the problem has been sol-
ved, by means of these, the value of p' and the p density func-
tion will also be obtained. In this case, Equation (1) gives the

degree of permixing by calculation of the integral.

In conclusion it should mentioned that the normal differen-
tial equation, describing the changes of the entropy of mixing in
time cannot be deduced it has no universal form. This can be ex-
plained in the following manner. The entropy of mixing has been
regarded as the degree of mixing, whether the task is to mix mate-
rials or internal energy. (Equation (1) can be generalized for the
simultaneous mixing of both material and internal energy.) Accord-
ingly, the II. law of thermodynamics can be applied, but not the
theorems of irreversible thermodynamics describing processes in
time. The equations of thermodynamics, describing process in time,
always refer to spontaneous -~ although complex - equalization
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processes [4]. Mixing is doubtlessly an equalization process, but
not a spontaneous one.Therefore a mechanical mixing process cannot
be described as a spontaneous equalizing process where the gradient
of an intensive quantity is the driving force. E.g. a mixing which
produces eddy currents the velocity field has not potential func-
tion [11. If the equalization process was brought about by genera-
lized thermodynamical forces (the gradients of the intensity para-
meters within the system), the irreversible entropy production
brought about in the process (i.e. the entropy of mixing) could be
calculated from the equations describing the changes in time, for-
mulated to a continuum [4]. It is outside the scope of this paper,
but nevertheless it can be mentioned that mixing could perhaps be
described as the tendency of a generally fictive and as yet unknown
intensity parameter for equalization. The theoretical foundation
seems, on the basis of the foregoing, to be doubtful, but in order
to reach only a given aim, not impossible. Only a comparison with
practice can tell whether it is successful or not. Consequently,
the expansion of the theory in this direction will not be dealt
with. (The differential equation of the change in time, which is
founded on an empyrical basis and can be checked asymptotically,
has been elaborated together with Dr. T. BLICKLE (5]1.)
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PE3tME

Lns TEopPETHHECHOrO ONMCAHWA CMewWWBAHWWA aBTop o6obwaeT Bupa-
HEHWE DNpHpaUEHHA 3HTPOMKWK NpH NEepeMewHBAHWW WAealbHLX Fa30os, pac-
CMaTpHBAeT CBOWCTBA BENMYWHL, NONY4aeMOM TaHMM NyTeM. SHTPOMUA
CMEWHBAHWA OKa3biBABTCA NPHIFOAHON ANA HOAMYECTBEHHONO OXapakTepH3o-
BA@HWA NEpEMEWHBAHHUA .

B cneaywowed yacTu coobuyedus aBTOP MPBRETABHT MNpPaKTH4YBCHOB

NpHMEHEHME METO4a HA YNPOWEHHON FHMOPOAHHAMHYECHOM MOGENH.



	Page 1 
	Page 2 
	Page 3 
	Page 4 
	Page 5 
	Page 6 
	Page 7 
	Page 8 
	Page 9 
	Page 10 
	Page 11 
	Page 12 
	Page 13 
	Page 14 
	Page 15 
	Page 16 
	Page 17 
	Page 18 
	Page 19 
	Page 20 
	Page 21 
	Page 22 
	Page 23 
	Page 24 
	Page 25 
	Page 26 
	Page 27 
	Page 28 
	Page 29 
	Page 30 
	Page 31 
	Page 32 
	Page 33 
	Page 34 
	Page 35 
	Page 36 
	Page 37 
	Page 38 
	Page 39 
	Page 40 
	Page 41 
	Page 42 
	Page 43 
	Page 44 
	Page 45 
	Page 46 
	Page 47 
	Page 48 
	Page 49 
	Page 50 
	Page 51 
	Page 52 
	Page 53 
	Page 54 
	Page 55 
	Page 56 
	Page 57 
	Page 58 
	Page 59 
	Page 60 
	Page 61 
	Page 62 
	Page 63 
	Page 64 
	Page 65 
	Page 66 
	Page 67 
	Page 68 
	Page 69 
	Page 70 
	Page 71 
	Page 72 
	Page 73 
	Page 74 
	Page 75 
	Page 76 
	Page 77 
	Page 78 
	Page 79 
	Page 80 
	Page 81 
	Page 82 
	Page 83 
	Page 84 
	Page 85 
	Page 86 
	Page 87 
	Page 88 
	Page 89 
	Page 90 
	Page 91 
	Page 92 
	Page 93 
	Page 94 
	Page 95 
	Page 96 
	Page 97 
	Page 98 
	Page 99 
	Page 100 
	Page 101 
	Page 102 
	Page 103 
	Page 104 
	Page 105 
	Page 106 
	Page 107 
	Page 108 
	Page 109 
	Page 110 
	Page 111 
	Page 112 
	Page 113 
	Page 114 
	Page 115 
	Page 116 
	Page 117 
	Page 118 
	Page 119 
	Page 120 
	Page 121 
	Page 122 
	Page 123 
	Page 124 
	Page 125 
	Page 126 
	Page 127 
	Page 128 
	Page 129 
	Page 130 
	Page 131 
	Page 132 
	Page 133 
	Page 134 
	Page 135 
	Page 136 
	Page 137 
	Page 138 
	Page 139 
	Page 140 
	Page 141 
	Page 142 
	Page 143 
	Page 144 
	Page 145 
	Page 146 
	Page 147 
	Page 148 
	Page 149 
	Page 150 
	Page 151 
	Page 152 
	Page 153 
	Page 154 
	Page 155 
	Page 156 
	Page 157 
	Page 158 
	Page 159 
	Page 160 
	Page 161 
	Page 162 
	Page 163 
	Page 164 
	Page 165 
	Page 166 
	Page 167 
	Page 168 
	Page 169 
	Page 170 
	Page 171 
	Page 172 
	Page 173 
	Page 174 
	Page 175 
	Page 176 
	Page 177 
	Page 178 
	Page 179 
	Page 180 
	Page 181 
	Page 182 
	Page 183 
	Page 184 
	Page 185 
	Page 186 
	Page 187 
	Page 188 
	Page 189 
	Page 190 
	Page 191 
	Page 192 
	Page 193 
	Page 194 
	Page 195 
	Page 196 
	Page 197 
	Page 198 
	Page 199 
	Page 200 
	Page 201 
	Page 202 
	Page 203 
	Page 204 
	Page 205 
	Page 206 
	Page 207 
	Page 208 
	Page 209 
	Page 210 
	Page 211 
	Page 212 
	Page 213 
	Page 214 
	Page 215 
	Page 216 
	Page 217 
	Page 218 
	Page 219 
	Page 220 
	Page 221 
	Page 222 
	Page 223 
	Page 224 
	Page 225 
	Page 226 
	Page 227 
	Page 228 
	Page 229 
	Page 230 
	Page 231 
	Page 232 
	Page 233 
	Page 234 
	Page 235 
	Page 236 
	Page 237 
	Page 238 
	Page 239 
	Page 240 
	Page 241 
	Page 242 
	Page 243 
	Page 244 
	Page 245 
	Page 246 
	Page 247 
	Page 248 
	Page 249 
	Page 250 
	Page 251 
	Page 252 
	Page 253 
	Page 254 
	Page 255 
	Page 256 
	Page 257 
	Page 258 
	Page 259 
	Page 260 
	Page 261 
	Page 262 
	Page 263 
	Page 264 
	Page 265 
	Page 266 
	Page 267 
	Page 268 
	Page 269 
	Page 270 
	Page 271 
	Page 272 
	Page 273 
	Page 274 
	Page 275 
	Page 276 
	Page 277 
	Page 278 
	Page 279 
	Page 280 
	Page 281 
	Page 282 
	Page 283 
	Page 284 
	Page 285 
	Page 286 
	Page 287 
	Page 288 
	Page 289 
	Page 290 
	Page 291 
	Page 292 
	Page 293 
	Page 294 
	Page 295 
	Page 296 
	Page 297 
	Page 298 
	Page 299 
	Page 300 
	Page 301 
	Page 302 
	Page 303 
	Page 304 
	Page 305 
	Page 306 
	Page 307 
	Page 308 
	Page 309 
	Page 310 
	Page 311 
	Page 312 
	Page 313 
	Page 314 
	Page 315 
	Page 316 
	Page 317 
	Page 318 
	Page 319 
	Page 320 
	Page 321 
	Page 322 
	Page 323 
	Page 324 
	Page 325 
	Page 326 
	Page 327 
	Page 328 
	Page 329 
	Page 330 
	Page 331 
	Page 332 
	Page 333 
	Page 334 
	Page 335 
	Page 336 
	Page 337 
	Page 338 
	Page 339 
	Page 340 
	Page 341 
	Page 342 
	Page 343 
	Page 344 
	Page 345 
	Page 346 
	Page 347 
	Page 348 
	Page 349 
	Page 350 
	Page 351 
	Page 352 
	Page 353 
	Page 354 
	Page 355 
	Page 356 
	Page 357 
	Page 358 
	Page 359 
	Page 360 
	Page 361 
	Page 362 
	Page 363 
	Page 364 
	Page 365 
	Page 366 
	Page 367 
	Page 368 
	Page 369 
	Page 370 
	Page 371 
	Page 372 
	Page 373 
	Page 374 
	Page 375 
	Page 376 
	Page 377 
	Page 378 
	Page 379 
	Page 380 
	Page 381 
	Page 382 
	Page 383 
	Page 384 
	Page 385 
	Page 386 
	Page 387 
	Page 388 
	Page 389 
	Page 390 
	Page 391 
	Page 392 
	Page 393 
	Page 394 
	Page 395 
	Page 396 
	Page 397 
	Page 398 
	Page 399 
	Page 400 
	Page 401 
	Page 402 
	Page 403 
	Page 404 
	Page 405 
	Page 406 
	Page 407 
	Page 408 
	Page 409 
	Page 410 
	Page 411 
	Page 412 
	Page 413 
	Page 414 
	Page 415 
	Page 416 
	Page 417 
	Page 418 
	Page 419 
	Page 420 
	Page 421 
	Page 422 
	Page 423 
	Page 424 
	Page 425 
	Page 426 
	Page 427 
	Page 428 
	Page 429 
	Page 430 
	Page 431 
	Page 432 
	Page 433 
	Page 434 
	Page 435 
	Page 436 
	Page 437 
	Page 438 
	Page 439 
	Page 440 
	Page 441 
	Page 442 
	Page 443 
	Page 444 
	Page 445 
	Page 446 
	Page 447 
	Page 448 
	Page 449 
	Page 450 
	Page 451 
	Page 452 
	Page 453 
	Page 454 
	Page 455 
	Page 456 
	Page 457 
	Page 458 
	Page 459 
	Page 460 
	Page 461 
	Page 462 
	Page 463 
	Page 464 
	Page 465 
	Page 466 
	Page 467 
	Page 468 
	Page 469 
	Page 470 
	Page 471 
	Page 472 
	Page 473 
	Page 474 
	Page 475 
	Page 476 
	Page 477 
	Page 478 
	Page 479 
	Page 480 
	Page 481 
	Page 482 
	Page 483 
	Page 484 
	Page 485 
	Page 486 
	Page 487 
	Page 488 
	Page 489 
	Page 490 
	Page 491 
	Page 492 
	Page 493 
	Page 494 
	Page 495 
	Page 496 
	Page 497 
	Page 498 
	Page 499 
	Page 500 
	Page 501 
	Page 502 
	Page 503 
	Page 504 
	Page 505 
	Page 506 
	Page 507 
	Page 508 
	Page 509 
	Page 510 
	Page 511 
	Page 512 
	Page 513 
	Page 514 
	Page 515 
	Page 516 
	Page 517 
	Page 518 
	Page 519 
	Page 520 
	Page 521 
	Page 522 
	Page 523 
	Page 524 
	Page 525 
	Page 526 
	Page 527 
	Page 528 
	Page 529 
	Page 530 
	Page 531 
	Page 532 
	Page 533 
	Page 534 
	Page 535 
	Page 536 
	Page 537 
	Page 538 
	Page 539 
	Page 540 
	Page 541 
	Page 542 
	Page 543 
	Page 544 
	Page 545 
	Page 546 
	Page 547 
	Page 548 
	Page 549 
	Page 550 
	Page 551 
	Page 552 
	Page 553 
	Page 554 
	Page 555 
	Page 556 
	Page 557 
	Page 558 
	Page 559 
	Page 560 
	Page 561 
	Page 562 
	Page 563 
	Page 564 
	Page 565 
	Page 566 
	Page 567 
	Page 568 
	Page 569 
	Page 570 
	Page 571 
	Page 572 
	Page 573 
	Page 574 
	Page 575 
	Page 576 
	Page 577 
	Page 578 
	Page 579 
	Page 580 
	Page 581 
	Page 582 
	Page 583 
	Page 584 



