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A large number of mathematical models for the
dimensioning of rectifying column and the description
of the process of rectification can be found in lite-
rature. However, all these models use the concept of
plate or column efficiency. In the present paper, &
mathematical mcdel is proposed for the case of contin-
uous and non-continuous rectification which, by appli-
cation of the diffusion model, dispenses with the
necessity of the knowledge of the efficiency.Numerical
examples were elaborated for the illustretion of the
models. The calculations wvere carried out by an elec-
tronic computer.

INTRODUCTION

obtained that is substantially richer than the liquid left in
This operation is very frequently applied in the chemical

still.

Rectification is an operation which enables a vapour to be

industry. In the fractionating columns used to carry out the

ration, heat and material transfer processes occur simultaneously.

In order to determine the main dimensions of such columns,

McCabe-Thiele method

-Savarit method [1] in the case of non-ccastant

A number of papers were published in recent years (2] dealing with

is most frequently applied, and the Ponchon-
overflow is used.
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this subject and proposing models which enable more accurate theo-
retical description of the processes. Efforts were made to try to
describe the simultaneous heat and material transfer by analytical
methods. The most important drawback of the above-mentioned gra-
phical methods 1is the fact that the determination of the plate or

column efficiency is difficult [31].

In the present paper a mathematical model is proposed for
the numerical dimensioning of two-component fractionating columns.
The treatment is basically valid for plate-type columns,but - with

slight modifications - it can also be used for packed columns.

A diffusion model is applied in connection with the plate.
The relations are presented for continuous and batch operation,

the application is illustrated by a numerical example.

CONTINUOUS OPERATION

As mentioned in the foregoing, graphical methods, and - in
the case of certain operational conditions - analytical procedu-

res [e.g. Fenske-Underwood equation (1)] can be used for the de-

termination of the theoretically ne-

cessary number of plates in continu- Xp-1
ous rectifying columns. The real

number of plates can be determined n

if the column or plate efficiency is

known.

Mathematical Model i .

th

Let be considered the n
plate of the column (Fig. 1). The \\\\\_—i,’///
concentration of the liquid entering

the plate (z=0) is Xoo1- The liquid, Fig. 1
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during its progress along the plate, meets the vapour arising from
plate n+l. This vapour

is well mixed and con-

'dG.y“ sequently its concent-

l ration along the co-or-
* dinate z 1is constant
dx h and it leaves the plate
Lix+ g7 dz) - LX-DZ%%Bh enriched in the more

-0 (dx + %ide)Bh-‘— [ volatile component.This
2\dz z ) concentration is, natu-

rally, a function of

z+dz i z
the co-ordinate z. The
La.in+1 liquid, having passed a
plate of the length Z,
leaves it at a concent-
Fig. 2 ration X .

As a first step, the material balance of the more volatile
component is written for an elementary liquid laver of the height

h (Fig. 2):

ax ax a2x
L (x + — dz) - D (— + — dz) Bh + den =
dz 2 4z az?
dx _
= Lx - DZ — Bh + den+l
dz
and
dx a2x _ (
L —dz -D, —~ dzBh = a6(¥ ., - v,) 1)
dz dax

The material transport Dbetween the 1liquid and the vapour
phases can be described by the material transfer coefficient on

the side of the vapour:

dG(§n+l - Yn) = Bg(yn - y%)dfe (2)
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(It is to be mentioned that the vapour concentration varies between

the values and Y and consequently Equation (2) is, at the

y
n+l
same time, the gquation defining the vapour side transfer coeffi-

cient.)

The specific contact area referred to unit volume is intro-

duced:
dfe 1 dfe
. = - (3)
av Bh dz
Considering Equations (2) and (3), Equation (1) becomes
dx a?x
L — ~D —— Bh + 8 (y* - Bhe = 0O
dz z dz? g v Yn)
With the introduction of the dimensionless variables ’
z LZ B _€Bh
E =— , Pe = , No = —B—u 3
Z BhD L
Z
the Equation (4) attains the following final form:
ax 1 a2x
—_—— — + No (y* - yn) = 0 (¥
ag Pe ‘dg?
where
0sEg <1 and x £ x =< X3

n-1

The calculation of the concentration of the vapour rising
from the plate should now be examined. Considering Equation (3),

Equation (2) can be written in the form

- *
4G BgeBh(yn v*)

y_n+1 - yn

but, the molar mass fluxes are constant and accordingly
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aG G
—~ = constant = —
dz z

and consequently
L

-y = —Noly - y¥) (3)
G n

For the case of the rectifying section, the ratio L/G can be

expressed by the reflux ratio:

L R
G R +1
and accordingly
No R _
Y, = (y* ~ v ) + ¥y,
n R+ 1 n n+l
Rearranging:
v R __ s
Yn+1 + o R+ 19 (6)
y=
n
1 + No =
R + 1

The average concentration of the vapour rising from the plate is

LS fl (7
y =— [y dz = [ y_ 4
n o, o °m o ®

The value of y* can be determined on the basis of the equilibrium

curve

y* = o(x) (8)
An equation essentially similar to Equation (5) can be writ-

ten for the stripping section, with the difference that is this

case L and G values are used which correspond to the change in ma-

terial flux caused by the feed:
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e FNoL/Gy*
Ynei + NolL/Gy

1 + NoL/G

Yo °©

The fth plate, i.e. the plate where the feed enters will now

be examined in order to

determine the relation LoXg 1

between the concentra-

tions in the rectifying — {_

and the stripping sec- L'Yf'l / \\

tions,resp. (cf.Fig.3). ~ 7 _‘_?ﬂL_F'xF
Supposing that a /1 =1

thorough mixing has oc- I’xfl//L““\aiiilj\,,__§__\\\

curred between the feed

and the liquid leaving
plate (f - 1) in the
downcomer tube prior to entering the plate, the material balance

Fig. 3

for the volatile component is:

fo—l + FxF = fo—l
or
L _ F
x = - X - —-x
-1~ Tf-1 7 F (9)

It is apparent that only the relation between the material
fluxes need to be given. This can be done on the basis of the
overall material and heat balances of the feed plate (Fig. 4).

The overall material balance is:

_ - L.'iL Gnis
L+F+6 = G+1L ‘ ‘
F,iF
The heat balance is: | ‘ l l
é,ig Ioit

Li, +# Fi_ + Gi_ = Gi, + Li
g L
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Assuming that

i, =~

L and i, = 1(-}

i
the ratio of the change in molar flux of the liquid to the feed

flux is q;

(10}

G -G
=q -1 (11)
F
and
1 D
1 i, - 1
G F
Q= (12)
lG—lL
F £ Summarizing the equations
obtained, and taking Fig. 5 into
consideration, we obtain
N
N dx 1 a2x
— - — —— + No(y* -y ) =0 (k)
ag Pe 4g2
where
M
LZ/BhD if 1 £ n £ f-1
z
Pe =
Fig. 5 Lz/BhDz it £ Sn <N
Va4 * No (L/G)y*
y_ = (6}
B 1 + No (L/G)
where
B £€Bh 2
-5—5——— if 1 snstf-1
Fo L/G =
8 ¢Bh 2
£ —— if £SnsHN
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1
y, = é y, d& (1)
¥* = 9(x) (8)
L F
x = - X - T x (9)
£-1 7 T ¥ee1 T T %F
L -L=Fq (10)
G - G = F(g-1) (11)
i, - i
q = L £ (12)
ig - i

In order to make the model complete, the boundary conditions are
to be defined.

Boundary Conditions

In the case of Equation (u) (13)
x(1) = x 1<ns<¥N {13)
and
dx
— (1) <o (14)
dg

i.e. the derivative of the concentration function of the liquid
leaving the plate is a constant, which is.characteristic of the
plate (and of the degree of the material transfer) whose value is
different at every plate. As a first approximation, it was suppo-
sed that the value of this constant was zero. In order to estab-
lish the validity of the material balance, the value of the con-
stant was varied by iteration until the material balance was true

to the prescribed degree of accuracy. It should be noted here that
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’

the value of Equation (14) cannot be zero, as it is generally as-
sumed in literature [e.g. (5)1; this would be true only in the

case of a plate of infinite width.

« The concentration of the distillate should be known, i.e.:

IA
™y
A
-

x; < x(g) =x 0 (15)

D

Equation (15) should be formulated like this, since it cannot

be prescribed that

if the value of Z is fixed.

Generally the concentration of the bottom product 1is also
prescribed; however, this is not adequate to be chosen as a boun-
dary condition. Considering Fig. 6 the material balance for the

more volatile can be constructed:

LxN = GyN+l + MxM
N
and from this
G M
X = -y + — X
N LN+1 LM

Assuming equilibrium in the boiler: M,Xy
Ypep = 0(xy)
Fig. 6
and consequently
G M
X, = = ol{x,) + = x (16)
N L M i M

The material fluxes can be determinec on the basis of the top

and bottom product concentrations, as well as the condition - Eq.
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(12) -, amount and concentration of the feed, for a given reflux

ratio, since

Gyj?f L’xf..l

=]
L}
(=2 I ol

——— F_'XF

and on the basis of Fig. 7

FxF = DxD + MxM

and
F =D+ M

The value of D and M can be
determined from this equation, Fig. 1

and on the basis of

and
G

L +D

the material fluxes in the rectifying section are L and G. By the
application of the values of q and F and on the basis of Equations
(10) and (11), the L and G values will be known.

Moreover, the 1location of the feed, i.e. the value of f
should be known. Considerations concerning this problem will be

described in the following.

Numerical Solution

In the determination of the boundary conditions, cases were
considered where the degree of separation was predetermined and
the necessary number of plates was sought. The algorithm enabling
the calculation of this problem will be described here.
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The calculation will be started at the bottom of the column,

at the NTD plate, considering the conditions

x(1) = xy

and

dx
— (1) = constant (N)
4ag
The equilibrium curve can be written, with the application of the

relative volatility, in the following form

ax

y* = —m—— (17)
1+ (a - 1) x

where generally o = a(x),i.e. the y* pertaining to a given x value
can be determined. The value of Ya for the lower section is ob-

tained on the basis of Equation (6):

- *— -,=
Yoep * Y* Mo L/G

1 + Ko L/G

Yo T
Accordingly, x{E) can be calculated with the application of Equa-
tion (4). By proceeding along the plate to the value § = 1, the
function yn(g) is obtained, by whose integration the average con-
centration of the vapour arising from the plate is obtained ([cf.
Equation (7)]. If the place of feed has been reached, the change
in concentration due to the feed can be calculated by Equation (9},

where

for the fth plate.

Using Equations (10}, (11), and (12), the material fluxes,
as well as the No and Pe values of the rectifying section can be
determined. The calculation is then carried on until the conditispn

x(g) 2 x
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comes true. The plate on which this occurs will be the first plate.

Hereupon the calculation is repeated with various feed places
taken until the partigular feed place giving the minimum number of
plates is found.

In order to illustrate the aforesaid, a numerical example
will be presented. The calculations were carried out using digital:
computer type ODRA 120u.

Numerical Example

Data used in the calculation of the example:

D = 88.8 kilomoles/hour F = 216.8 kilomoles/hour

M = 128 kilomoles/hour q = 0.916

fM = 0.00565 Xp = 0.36

L = 303.4 kilomoles/hour x, = 0.87

G = 174.45 kilomoles/hour ) = 0.0782 hour/kilomole

a = § e =  303.4% hours/kilomole
where Pe = ©pL and e = L No.

The material transfer surFface area and the material transfer

coefficient were determined on

the basis of HOBLER [4], where- 1.0
as the diffusion coefficient X
. 6
can be calculated on the basis 0.8 — |
—— /
The results obtained are 0.6 -
illustrated in Figs. 8, 9 and | "
g | —
10. Figs. 8 and 9 show the 0.4 4
. —
changes in liquid and vapour 3
concentrations along the plate, ’ ______——E——
resp. Fig. 10 shows the con- I e
centration of the liquid en- .
tering the plate and the ave- 0.0

rage composition of the vapour 0.0 0.2 0.4 0.6 0.8 £
leaving the plate along the

height of the column. Fig. 8
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1.0
6
0.8 5
. 4
0.6 3
=]
0,4
e 2
__‘——‘_—
0.2 e
4_——_—_——_T——
0.0
0.0 0.2 0.4 0,6 0.8 €
Fig. 9
6 /
. /A
, // ’
, ///
v/
0,0 0,2 o0, 0,6 0,8
X,y
Fig. 10

BATCH OPERATION

In the case of
batch fractionating co-
lumns, two modes of
operation can be dis-
tinguished, according
to the aim of the pro-

cess:

- operation with a
distillate of con-
stant composition,

- operation at a
constant reflux

ratio.

From the two modes
of operation mentioned
above, the first is ap-
plied more frequently.
This necessitates a
continuous variation of

the reflux ratio.

A batch fraction-
ating column will now
be considered and its
mathematical model con-
structed, together with
necessary initial and
boundary conditions.
Heat and material ba-
lances will be employed.
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Mathematical Model

/’”/ 1~ :>\/,Qk
The fractionating column is e N
/

shown in Fig. 11. The material balance { D:XD
of the column will now be constructed a ————— <
for time instants v and T + dr. The 1l el — !

. . ) 1
overall material balance is n-1'———_ /

1 /
dF "NoAT e /
F=(F+—at) +D dr n+1 —tﬂi"\'lﬂ,//

dr .

from where \\\
aF
D= - — (18) Faxg,tp \
dr
The material balance for the more vola-~ Qw
tile component is
Fig. 11
ar dxF
Fxp = (F + — dT)(xF + — dt) + DxD dt
daTt dt

and rearranging

dxF D

= - - (xD - xF) (19)
art F

The following two equations are deduced from the material
balances applied to the column.

The overall material balance, for the part enclosed by the
control surface is

D+ 1L = G (20)

The material balance for the more volatile component, for the

part enclosed by the control surface is

Dxp + Lyxy = Gus1 Ypa1
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from which

D
n+l
X = —Y - — x (21)
n 1 n+l L D
n n

Further relations can be derived by constructing the heat balance:

. 4F aip
FlF + qAdtr = (F + ;: dr)(lF + . dt) + Dipdr + (D + Ln) MDdeT

It is supposed that a perfect condensation occurs in the condenser,

where the amount of heat to be removed is

= \
Qe = (D + L} Mpr)

the same, expressed with the reflux ratio; is

Qk = D(R + 1) MDrD

The relation can be simplified by supposing the additivity of the

enthalpy:
i = - 22
i= [xcl + (1 x)c2]t (22)
and
di 9i at 9i dx
—_— — —  — —
dr at dr dx drt
where
dai )
— = xc, + (1 - x)e
at . 2 (23)
ai
— = {c; - e )t
The above equation can be simplified - *he group of Equations (23)

is, for the sake of conciseness, not gi-
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ai 0i_ dx
F F . F F F

atF dart axF dr

at
(2k)

qQA = F r

D

+ D (1D - 1F) + (D + Ln) Mpr o

The following should be added to the connections obtained in

the above:

tp = w(xF) (25)
and
dt at_, dx dx
Fo_ F F_ a(XF) F (26)
dt dxF dt dt

from where Equation (24), considering also Equation (19), will be-

come
aiF a1
qA = D[lD - 1F - (xD - xF)( a(xF) + Y} o+ (1 + R) MDI'D]
3t 3x
F F
or
qA = D[lD - iF - (xD - XF)[(chl + (1 - xF)cz)a(xF) +

+ (cl - C2)tF] + (1 + R) MDrD] (27)

where the enthalpies iD and iF can be calculated from Equation
(22), taking the corresponding concentrations X, and Xy as well as

the temperatures t, and ty into consideration.

The relations defined in the foregoing have to be supplemen-
ted with the equation of the equilibrium curve, as well as with
the elementary material balances as written for a plate (cf. sec-

tion 1.) and the definition of the reflux ratio.

In accordance with the foregoing, the equations can be sum-

marized in the following:

aF
—_— = D (18)

dr
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dxF D
—E == g - ) (19)
d= F D F
D+ L =G, (20)
G D
n+l
=¥ - — X (21)
n L n+l L D
n n
qA = D{iD - ip - (XD -~ XF)[(ch1 + (1 - xF)ce)a(xF)tFJ +
+ (1 + R) MDrD} (27)
y* = o(x) (8)
ax 1 a%x
_—- + No(y* -y ) =0 (%)
dE Pe dE? t
y_ = Ypey * No L /G, ¥* (6)
n
1l + No Ln“Gn+l
L (1) L (1)
R = R(1) = =2 = - (28)
D(T) G(t) - Ln(T)
q = k(t, - tg) (29)
where te is the constant temperature of the heating medium and k

is the heat transfer coefficient.

It is supposed in the course of the solution of the set of

equations that the molar material fluxes are unchanged along the

column in a given time instant {i.e. the dynamic hold-up is con-

stant along the column, but it may be dependent on time).
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Conditions

In order'tg_solve the set of equations, the initial and bo-
undary conditions, which, for Equation (4), are the following

x(1) = x 1 <n<N (13)
and

dx

~— (1) = constant(n) (14)

dg

The constant described here is characteristic of the plate men-

tioned in the foregoing.

The initial conditions are the following:

F(Q) = Fo

xF(O) = xg (30)
o

tF(O) = tF

The further conditions are dependent on the mode of operation and

accordingly in the first mode

x, < x{g) = x; = constant 0SES<1 (15a)

and

R(0) = R, (318)

whereas in the second mode of operation

D

xD(O) = x (15b)
o o

and

R(t) = R = constant (31b)
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Numerical Solution

While defining the limiting conditions it was supposed that
the number of the plates being present in the column is at first
not defined, it will be decided on the basis of the initial con-
dition with application of the model. The calculation is carried

out according to the following:

the molar material flux of the destillate is determined from
the given conditions ‘by Equation (27) and hereafter the material
fluxes are determined with the application of the initial value of
the reflux ratio and with Equation (20). As the material fluxes
are known, the composition of the liquid leaving the last plate
(n = N) can be determined on the basis of Equation (21) and since
the values
Yper = 0lxp)
(8)
Y = elxy)

can be calculated, the change in concentration along the plate can
also be determined. The calculation is now carried out in accor-
dance with the procedure described in Cﬁapter 1, from plate to
plate, as long as the condition given in Equation (1§5) is fulfil-
led. The number of plates determined in this manner will be con-
stant in the following, and accordingly the calculation is carried
on with a column of known number of plates.

The rates of changes can be determined on the basis of Equa-
tion (18) and (19) and the new. values can be calculated if the

time scale has been fixed. Accordingly:

aF
F(1 + A1) = F(t) + — (1)ar
dt
dx )
(v + a1) = x (1) + — (1)ar
xp(t F .
dt

tF(r + At) = tF(T) + —E (1)t



266 M. Parti and B. Paléncz Vol. 1.

The course of further calculations is the following:
1. In the first mode of operation

the above described calculation is first repeated with
unchanged reflux ratio and should the condition

lx. - x

D pul =

be fulfilled, the reflux ratio need not be modified. 1In
the opposite case, the reflux ratio is to be modified
(increased) until the condition is fulfilled (the pre-

scribed margin of error is ek).
2. In the second mode of operation

the calculation can be carried on without alteration,

with the only remark that

i.e. the composition of the vapour leaving the uppermost
plate gives the new composition of the distillate.

The calculation is carried on until the prescribed final com-

position is reached.

In order to illustrate the model a numerical example has been
elaborated for the case of a constant reflux ratio. The calcula-
tions were carried out with digital computer type ODRA 1204.

Numerical example

Data used (ethyl aicohol-water system):

Fo = 200 kilomoles
Xpg © 0.3

Xpo © 0.7

R = 0.52

P = 1 atmosphere
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A = 10 sg.metres
k = 200 kilocalories/sq.metres~hour-oc
_ o
tf-lso C
p = 0.125 hour/kilomole
¢ and
e = 86 hours/kilomole
a = 46 x2 - 38.2 x + 10.36, if 0 < x £ 0.4
a = 4-16 x2 - 8.2 x + 5.02, if 0.4 <= x < 0.7
furthermore
tbp = 14y x2 - 100 x + 100, if 0 £ x £ 0.
tbp = -8.5 x + 86.5 if 0.4 £ x <
The constants
in the relations re-
ferring to the rela-
200 — 0.3 tive wvolatility or
bubble point were
F F XF determined by para-
160 — bolic or linear
approximation. If a
Xg 0.2 higher degree of ac-
120 curacy is_ required,
the constants can be
determined by regres-
sion analysis.
80 T T T T T .
0 1 2 3 4 5 6 Fig. 12 shows
T the changes of the
Fig. 12 quantities F and Xp

plotted against time.

The numerical example can be calculated for changing the

reflux ratio in the same manner.
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CONCLUSIONS
¢

Table 1 clearly illustrates Table 1
that the value of the initial de-
rivate dx/dg(1) considerably dif- Number of dx
fers from' zero in the case of a plate dE |g=1
number of plates and this ac- 1. -0.025
counts for the consideration of 5. -0.032
the final plate dimension. 3. _0.08k%

It should be mentioned that k, -1,300
the model enables the determina- 5. -0.350
tion of the composition of +the 6. -0.180

top and bottom products in con-

tinuous operation at a given plate

number, i.e. in the case of a given column, if the feed plate and
the conditions of feed are known. This could make possible the de-
termination of the optimum feed Place and calculation of the cor-
responding top and bottom products in the case of switching over

to another product.

Further development of the models may also enable the con-
sideration of a variable takeoff; however, in this case they be-
come very complicated and the calculations are very difficult to

carry out.

SYMBOLS USED

a functional relation
specific heat (kilqcalories/kilomole-°C)
fe material transfer surface area (sq.metres)

h height of liquid on the reay (metre)

i molar enthalpy (kilocalories/kilomole)

n number of trays

q heat flux density (kilocalories/sq.metre, hour), dimension-

less variable (~)
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latent heat (kilocalories/kilogram)

temperature (°c)

concentration of liquid

concentration of vapour

average concentration of vapour leaving the tray

vapour concentration in equilibrium with x

heat transfer surface area (sq.metre)

width of plate (metre)

material flux of destillate (kilomoles/hour),
diffusivity (kilomoles/metre hour)

material flux of feed (kilomole/hour),
bottom product (kilomole)

material flux of gas phase (kilomoles/hour)

material flux of residue (kilomoles/hour),
molecular weight (kilograms/kilomole)

total number of plates

heat removed by the condenser (kilocalories/hour)

reflux ratio

Peclet-number

dimensionless quantity

Greek letters

m e M ™ R

relative volatility
heat transfer coefficient (kilomoles/sq.metre-hour)

heat transfer surface area (sq.metres/cu.metre)
sign of functional relation

dimensionless variable

Indexes

A~ B ]

refers to the feed plate
refers to the condenser
serial number of plate
refers to the vapour side

269
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direction of the co-ordinate z
refers to the destiilate

refers to the feed or bottom product
refers to the vapour phase

refers to the liquid phase

refers to the residue

=2 2 Q" 9N
-
[N N>¥]

refers to the last plate
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PE3ME

8 nuTepaType H3ABECTERH pRG MATEMBTHHECHHUX MOOEnEn [na

PACCHATHUBAHUA DEHTHEMRAYMOHHEX 0COpPYAOBEHMIA M ONR ORMCAHMA
NpouecCa peMTudmrHaUunm., A BCE 37n mogenu ynotpebnnweT KO3 ou-
UMEHT MONEIHOro femcTemA TADBNOH MAM HONOHHL. B HacToRwen
PalCTe Onucan MaTeMaTuwaskwn MOLeNe, YNDA3HAKWMN C MOAL3IC-
Baxwer auddyauonnon MOLEnv HEQOSXOAMMOCTL 3HAHMA HO3dGuymen -
Ta noneaHoro aencrsva, JAaa MANGCTpaYvK Moaenen suipato -

T@8HL “WCN0EWE NpuMepu. FacdeTw NpOM3BEAEHE Ha

3NEHTPOHHO -
BoMMCAMTEALHLX Mawmwm .,
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