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The knowvledge of the properties of gramulates is
of considerable importance,both as regards application
and scientific research work. Methods for the determi-
nation of the most important physical characteristics
of granulates (such as grain-size distribution,density
characteristics, pore space fraction, rolling tendency
characteristics, and mechanical strength) published in
literature, are described. The results of the research
work aimed at checking the applicability of the
testing methods and the development of new techniques
are reported. The concepts of "loosened bulk density"
and "rolling tendency coefficient" are introduced and
measuring techniques enabling the determination of
these gquantities are described. A simple measuring
technique 1is proposed for the determination of the
pore space fraction. The technique is based on the
identical space filling characteristics of particles
of an identical shape. A new measuring method for the
determination of the abrasion strength (abrasion re-
sistance) of the granulates is described, which is
based on the measurement of the mechanical stress
acting in the fluidized layer.

In chemical and related industriec (e.g. the food industry)
the granulates prepared are used partly :5 starting materials of
further products and partly as final products. Various fields of
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application raise various requirements concerning the quality of
the granulates. However, the basic principles of qualitative
characterization are nearly identical and mainly refer to the phy-

sical properties of the granulates.

The main physical characteristics of granulates are the

.

following:

a) grain size distribution and form of the grains,
b) density characteristics,

¢) porosity,

d) rolling tendency characteristics,

e) mechanical strength.

Naturally, in addition to the above-mentioned physical para-
meters, there are other characteristics whicldmay be of importance
in some fields of application, e.g. tendency to crumbling, and
pressing ability, etc. However, the knowledge of these - although
in some caees of considerable importance - 1is in general not as
essential as the physical parameters listed earlier. Several other
authors are of the same opinion [1, 2, 3, 4, 5,etc.].The granulate:
are in some cases, mainly inm the pharmaceutical industry, very
often qualified in addition to their physical properties on the
basis of indirect parameters, such as the physical characteristics
of the tablets made of them (e.g. variations in the weight of the
tablets, time of falling apart, and abrasion resistance) [6, 71.

In the following, testing methods found in literature for
the determination of the most important physical characteristics
of granulates will be described, together with a report on the
elaboration of new techniques and the improvement of known ones.

GRAIN-SIZE DISTRIBUTION AND FORM OF THE GRAINS

In the study of the granulation process, generally the dis-
tribution of heaps of grains of different properties according t¢
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size is to be determined. The grain-size distribution of the
starting material to be granulated can rarely be determined by
sieve analysis; sliming [8, 9, 10l, sedimentation [8, 9, 10] or
microscopic examination [3, 9, 11} can be applied instead. The
latter method also enables the form of the grains to be observed.

The mqst widely used method for the determination of the
grain-size distribution of granulates is sieve analysis. This test
is most frequently carried out by a standard set of sieves [18, 9,
101. The granulates - especially those obtained by building=-up
type granulation - are of nearly spherical form, or at least the
largest and smallest dimensions of the granulate are not signifi-
cantly different from each other and consequently the accuracy of
the method is satisfactory.

In the case of

0.6 ﬂ granulates prepared by
the fluidization gran-

€ ] l
"ulation technique it
0.4

was found that the po-~

coode

rosity of the granu-~

a lates increases, 1i.e.
0.2 the grain density de-~
4 creases with increasing
dimensions. .
T T F i .
0.2 0.6 1.0 2,0 Fig. 1 shows the

d,mm change in pore space

Fig. 1 fraction plotted a~

gainst increasing vo-

lume in the case of 5 different granulates, prepared from a sand

fraction of 0.1 to 0.2 millimetre grain size in a laboratory-scale

fluidization granulation apparatus. It can be concluded from the

Figure that the grain density of granulate particles exceeding the

0.6 millimetre size is decreased to about one half as compared to
that of the ungranulated 0.1 to 0.2 millimetre fraction.

In the opinion of the author, in those cases where - the
porosity of the granulates and, together with it -, the grain den-
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sity is dependent on grain size, the ratio of the grain spaces is
far more characteristic of the granulates than the weight ratio
of the-individual fractions. The former can be calculated from the
weight ratio, if the porosity is known. In this case it is not the
weight ratio of the grains, but their volume ratio that is to be
considered in the calculation of the average grain size and other

average values (e.g. average grain density, etc.) of the granulate.

DENSITY CHARACTERISTICS

In the case of a heap composed of porous grains, real densi-

ty, grain density and bulk density can be considered.

The Real Density is often difficult to determine, because

the simple pyknometer density determination technique [8, 8, 10,
11] does not yield reliable results unless the sample is compact,
readily wettable and of small grain size. The Biltz vacuum pykno-
meter [9] can be used to determine the density of fine powders, if
it is possible to find an adequate indifferent measuring liquid.
The liquid-medium pyknometer technique can be used for the deter-
mination of the real density of masses composed of porous grains

only with reservation.

The liquid used for the measurement penetrates the grains to
an extent depending on the structure of the grains and the charac-
teristics of the liquid; consequently an intermediate value is ob-
tained which is between the real density and the grain density. In
such cases, the Hofsass air-pyknometer can be used; the accuracy
of the latter can be increased by using helium instead of air £sl.

Grain Density: the mass of grains of unit volume, can be ex-
pressed in the following way:

Pg = p(1 - cp) (1)

where
Pg is the grain density (gram/cu.centimetre),
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p is the real density (gram/cu.centimetre),

s is the pore space fraction.

The techniques applicable for the determination of the pore

space fraction are described in the next chapter.

Bulk Density: the mass of a heap of unit volume of grains.
The value of this quantity depends on a number of parameters, such
as average grain density, grain-size distribution, and grain form,
etc. However, the most influental parameter is =~ for a given heap
of grains - the closeness of packing. Accordingly, three bulk
density values can be defined: close-packed bulk density,filled-in

bulk density and loosened bulk density.

Close-Packed Bulk Density: the mass of a unit-volume heap of
grains pressed together intensively. This value is to some degree
dependent on the method of compression [12, 13]. In general, it
can be stated that the highest degree of compression and, together
with it, the highest close-~-packed bulk density is attained by vib~
ration brought about in some way, e.g. pneumatically. However,
even this value differs only slightly from grain heap densities
obtained by some other compression technique, e.g. mechanic or
manual compression. Different authors have proposed various tech-
niques for the determination of the close-packed bulk density. For
example, NEWITT and CONWAY~JONES [2] used high-frequency vibration,
MARKS and SCIARRA [7] repeated manual knocking in a graduated cy-
linder; according to KONCZ [8], the best method is the application
of a Becker-Rosenmiiller shaker, etc. Consequently, it is very dif~
ficult to compare the measured results. Nevertheless it is a gene~
ral opinion that ~ provided proper care is exercised - any of
the methods is adequate for the determination of the close-packed

bulk density.

Filled-in Bulk Density. The mass of a grain heap, when filled
into a vessel of unit volume. In addition to grain size distribu-

tion, grain density and grain form, the filled-in bulk density
also depends on the size and shape of the volumetric vessel and on
the method used to fill in the grains. The values obtained with
different techniques differ and this necessitated standardization
of the filled-in grain density determination methods [3]. The ap~
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- paratus consisting of two parts, shown in Fig. 2, serves this

purpose [15]3. The essence of the meas- )
urement is that a 120 millilitre portion #92.7mm

- of the ' granulate heap to be tested is T
poured into the funnel and permitted to
freely flow into the graduated cylinder
of 100 millilitres capacity. The excess

20°

is removed from top of the cylinder and

114.3mm

the mass of the latter is weighed. Other
authors [9]1 have proposed the applica-
tion of a filling apparatus according to

#9.5mm

3gmm

Gary and Bdhme.

Loosed ‘Bulk Density: the mass of a '

unit-volume heap of loosened grains. The
loosened heap is produced in the follow-

79.8mm

ing manner: aAgranulate heap of known

mass is placed into a simple laboratory- $39.9mm

-scale fluidization apparatus (4-5 cen-

~timetres in diameter) and fluidized Fig. 2
with air until an expansion of one and a half times or twice the
volume of the original, and then the amount of air is decreased
until a stationary layer is obtained. The height of the layer is
measured and it enables the loosened bulk density to be calculated

in a simple manner:

L G
(2)

P =
D2xY
m
where .
01 is the loosened bulk density (gram/cu.centimetre),

G is the mass of the heap of granulate (gram),
D is the diameter of the apparatus (centimetre),

X is the minimum fluidization layer height {centimetre)-

The schematic drawing of the apparatus is shown in Fig. 3.
While carrying out the measurement, care should be exercised to
ensure that, on the one hand, Y/Y  should not be higher than 1.5
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to 2, in order to avoid the production
of flow dust, and, on the other,Ym/D
should be 0.5 to 1.5. The loosened
bulk density values determined by the

proposed technique are well defined
and reproducible, and the apparatus
and the procedure are simple. To know
the value of the loosened bulk density
is important both from the points of

view of plant operation and design.

POROSITY
The pore space fraction - which
is the ratioc volume of the pores pre-

sent in the grains by total volume of
grains - can be determined by a number
of techniques. One of these 1is based
on the principle that a non-wetting
liquid (mercury) is forced at differ-

ent pressures into the pores of the

Fig. 3 grains, the amount of the liquid is
1. Fluidization apparatus measured and thereby it is possible to
2. Fr}tted‘glass retain- draw conclusions not only on the pore
ing disk .
3. Sieve, 15-20 um space fraction, but also on the size
L, Dismountable flange :
. This meas -
5. Millimetre scale of the pores [10, 11] measure
6. Loosened grain heap ment, with the use of mercury, can be

carried out in an even more simple manner, if it is not necessary

to know the distribution of the pore space fraction and the latter
can be determined by a suitable pyknometer technique [3, 8, 12].

In the study of the granulation operation it is necessary to
determine the pore space fraction on a large number of granulate

heaps, moreover, the determinations should be carried out quickly.

For this purpose, a simple but adequate ..re space fraction deter-

mination method was developed in the aut.or’s laboratory. The new
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method is based on the fact that the void fraction of a relatively
narrow grain fraction of practically spherical, compact grains
scatters between narrow 1limits [16]. Any significant deviation
from this value is in the case of grains larger than 0.2 millimetre
- and, accordingly, generally also in that of the granulates -~
the consequence of the porosity of the grains and hence it can be

used for pore space determination.

The definition of the void fraction is the following:

where
€' 1is the void fraction,
is the volume of the layer (cu.centimetre),
v is the volume of the solid material present in the
layer (cu.centimetre),
G is the mass of the solid material (gram),
is the real density of the solid material
(gram/cu.centimetre),
is the height of the layer (centimetre),

F is the cross section of the apparatus (sq.centimetre).

On the basis of geometric considerations it is evident that
the void fraction, in the case of porous grains, can be written in

the following manner:

1 1] L]
€ = e + (1 - ¢ .e (%)
2 1 ( 1) P
where
eé is the void fraction in the case of porous grains,
e€; 1is the void fraction without pores (taking only the
free space between the grains in consideration),
€, is the pore space fraction of the grains.
Equation (4) can be written for the point of minimum fluidi-
zation:
' = 1 - ]
€1 e v (1 €rq) s (5)
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and hence the pore space fraction of the grains (sp) can be ex-

pressed:
' - [
_ Emo €m1
pT T, o (6)
. T fm1
where

€1 is the minimum void fraction of a compact granular
material of a form similar to that of the porous
grains,

eég is the minimum void fraction of the porous granular

material.

The minimum void fraction of the porous granular material

(s&e) is, on the basis of Equation (3), the following:

ev =m__F_.£ (7)

where

Y is the minimum fluidization layer height of the

grain fraction (centimetre),
G is the mass of the weighed-in grain fraction (gram),

[ is the mean real density of the materials building

up the grains (gram/cu.centimetre),

F is the cross section of the apparatus

(sq.centimetre).

The minimum fluidization layer height of the individual gra-
nulate fractions can be determined, as described in the previous
section, by means of the simple laboratory fluidization apparatus
shown in Fig. 3. The narrower the fraction tested (i.e. the higher
the number of fractions into which the r:ap of granulate was di-
vided), the higher the accuracy of the pore space fraction deter-

mination.
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During the research work carried out in connection with the
layer expansion of fluidized systems, among others the minimum
void fraction of relatively narrow grain fractions of quite a num-
ber of compact granular materials were determined.Microphotographs
of the grains were prepared and compared with those of porous
grains and granulates made of various starting materials by éiffe-
rent procedures. The minimum void fraction of grain fractions
consisting of compact grains of approximately identical form shows
a good agreement, and consequently - in the case of grain frac-
tions of a size exceeding 0.2 millimetre - the following wvalues

can be substituted into Equation (6):

a) regular, approximately sphere-shaped, porous grains:

€1 = 0.45;

b) less regular, sphere-shaped porous grains, granulates
prepared by a rotary (e.g. rotating disk) appara-

tus: € = 0.50;

ml
c) even less regular, porous grains, granulates prepared

by fluidization: ¢ = 0.55;

ml

d) broken, porous grains prepared by crushing or rough
disintegration, granulates prepared in a fluidized
layer from needle-crystal shaped starting material:

€1 = 0.60.

The determination method can naturally be refined in such a
manner that a series of photographs is made of compact grains of
various forms, the photograph of the porous grains to be tested is
compared with these, and the actual minimum void fraction value is
determined by this comparison.However, it is very rarely necessary
to carry out this procedure in studies connected with fluidization
granulation since the shape of the granulates obtained - except
for some needle-crystal shaped starting materials - is approxi-
mately identical, and the value of € = 0.55 can be substituted
into Equation {6).

Two comparative tests wepe carried out as regards the appli-
cability of the measuring teehmique described earlier. The essence
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of the first was that the pore space fraction of a number of gra-
nulate fractions was determined with the proposed technique, and
afterwards three lots of one thousand grains were counted, their
mass weighed and the pore space fraction (e*) calculated by Equa-
tion (1). The deviation

:p-ea
between the values de-
termined by the two
+0.08+ methods plotted against
— P the pore space fraction
+0.044 y()"'/‘./: as determined on the
- p”__,——” o o0 basis of the minimum
0.00_4< o _ o, void fraction, is shown
| '\\:; b4 I €, in Fig. 4. It can be
N concluded on the basis
~0.044 ..%\\ of the Figure that ex-
B cept for a few cases,
-0.08+ the relative deviation
is smaller than + 10
ep_c; 0.20 0.40 0.60 per cent and the agree-

ment is better at
Fig. b medium values, i.e. in
the case of granulates of medium size. In the second test, the mi-
nimum void fraction of burnt clay grain fractions of known poros-
ity was determined and afterwards the pore space fractions were
calculated by Equation (6) in such a way that - based on micros-
copic comparison - a value of e , = 0.50 was substituted. A com-
parison of the pore space fractions showed that the relative de-

viation in this case is also generally below * 10 per cent.

It is the advantage of the proposed measuring technique that

it is simple, rapid, and no expensive equipment is reeaded.

On the other hand, it is burdened by the drawback that when

applying it, the granulate heap to be tested has tc be separated
to at least 5 to 6 grain fractions. However, this is carried out

anyway during the sieve analysis and so the twc tests can be con-

nected. The average pore space fraction, characteristic cof the
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whole heap, can be calculated, knowing the grain size distribution,

by weighted averaging.

ROLLING TENDENCY CHARACTERISTICS

Rolling tendency is an important physical property of granu-
lar heaps of materials and it is characterized by the internal
friction of the heap. The rolling tendency characteristics are ge-
nerally described by the slump angle of a heap produced in some
manner, or by the rate of flow from a funnel of defined dimensi-

ons.

In connection with material heaps, a number of angles can be
defined,such as slump angle, falling angle, sliding angle, spatula
angle, internal friction angle, and inclination angle [17]. Most
frequently it is the slump angle from among these, referred to a
heap of grains produced by a standardized procedure, which is de-
termined. The essence of one such procedure is that the standardi-
zed funnel [15] shown in Fig. 2 is fixed in such a position that
its lower end is U4 centimetres above the base and the material to
be tested is poured into the funnel until the apex of the material
heap produced just reaches the lower end of the funnel. The height
of the heap and the diameter of the base circle are measured and
the slump angle calculated from these data [3]. Slump angle deter-
mination can also be carried out by the Langhaus-—apparatus [91].

When a heap of grains flows from a funnel of standardized
dimensions, the result can be expressed by the discharge time of
the material of the unit mass or unit volume, and by the mass or
volume of material discharged during the unit time, etc. For
example, GOLD and his co-workers [18] evaluated the results on the
basis of the discharge time of a given mass, KANENIWA and IKEKAWA
[19] on the basis of the mass discharged during unit time, and
LISKE and MUBUS [20] on the basis of the volume discharged during
unit time.
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A number of authors dealt with the circumstances of the dis-
charge of granular matter from a funnel, including KANENIWA and
IKEKAWA. These authors concluded [19] that, in addition to the
properties of the grain heap, the rate of discharge depends, to a
large extent, on the diameter of the discharge opening, its length
and the cone angle of the funnel, but it is independent of the
height of the heap above the opening. The latter statement, with a
few exceptions, was also confirmed by other authors [21, 22]. It
follows from the aforesaid that it is primarily necessary to stan-
dardize +the funnel in order to obtain comparable results. For
example, the standard funnel shown in Fig. 2 [15] enables the rol-
ling tendency characteristics to be determined. A hundredfold (in
grammes) of the density (gram/cubic centimetre) of the solid is g
poured into the funnel and the time necessary for discharge is
measured [31. Experience shows that the researchers use funnels of

different dimensions for this measurement {4, 5, 7, 19, 20].

In the author’s opinion, the discharge data are more charac-
teristic of the rolling tendency than the slump angle. This is f
supported by the fact that the discharge rate shows - in the case :
of different grain heaps - considerably greater variations, and
consequently the method is more sensitive. For example, according
to data published by LISKE and MUBUS [20], the discharge rate from
a given funnel corresponding to a slump angle of 46° was 288 mil-
lilitres/minute, whereas that corresponding to yu,2° was 370 mil-
lilitres/minute. On the other hand, the discharge rate, in the

case of certain types of granulate heaps, may fluctuate in  time

even if the average value is the same [18]. The determination of

this fluctuation provides a possibility for further refinements.

Different methods based on the measurement of the discharge

rate from a funnel are used in general practice for the determina-

tion of the rolling tendency characteristics and consequently it
seems desirable to introduce a few improvements in the measuring
techniques in order to obtain results that are readily comparable.
The grain volume discharged in unit time seems to be more adequate

for the comparison of the rolling tendency characteristics of gra-
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nulate heaps than the mass of grains discharged in unit time. This
is especially true if heaps of different grain density are to be
compared. Of c¢course, the average grain density or porosity should
be known in this case; a simple and rapid technique for its deter-
mination was described in the previous chapter. .

The other problem arises as a consequence of the difference
of the testing methods. It is the author’s opinion that this dif-
ficulty could be overcome if the results obtained with different
methods were compared with the discharge rate of a generally ac-
cepted standard material. The rolling tendency coefficient defined

in this manner is

v
= B
) p (8)
s
where
[ is the rolling tendency coefficient,
v is the discharge rate of the standard material

{cu.centimetre/second),

v is the discharge rate of the granulate under test

(cu.centimetre/second).

Narrov fractions of different sizes of a number of different
materials were examined and from among the materials available,
that consisting of regular glass spheres of approximately 0.15 mm
(100 mesh) dimension was found to possess the most advantageous
rolling tendency characteristics. This material is a commercial
product (GLASS BEADS FOR GAS CHROMATOGRAPHY, approximately 100
MESH, BRITISH DRUG HOUSES LTD., B.D.H. LABORATORY CHEMICALS DIVI-
SION, POOLE, ENGLAND) and consequently it seems to be adequate to
be used as a standard in the determination of rolling tendency
characteristics.

If in the measurement of discharge rate, amounts correspon-
ding to the same grain space are weighed in from the standard ma-
terial and from the granulates, and the discharge times of the to-
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tal quantities are measured, Equation (8) takes the following form:

8
9 - (9)
g
where
9 is the rolling tendency coefficient,
Te is the discharge time of the standard material
(sec),
T is the discharge time of the granulate heap under

test (sec).

The time of discharge of a grain space of 100 cubic centi-
metres (Gs = 296 grammes) of the standard material proposed in the
foregoing from the standard funnel shown in Fig. 2 [15] is T S 8
seconds,- i.e, vy = 12.5 cubic centimetres/second. The rolling ten-

dency coefficient of a few grain heaps are given in the following:

glass beads d = 0.25 millimetre ¢ = 0.93
d = 0.42 millimetre 9 = 0.82
sand d = 0.10-0.20 millimetre ¢ = 0.62
d = 0.20-0.32 millimetre ¢ = 0.68
d = 0.32-0.40 millimetre ¢ = 0.66
d = 0.40-0.50 millimetre ¢ = 0.63
d = 0.50-0.63 millimetre 9 = 0.62
d = 0.63-0.80 mitlimetre 9 = 0.60
d = 0.80-1.00 millimetre 9 = 0.54

According to the author’s experience, the rolling tendency
coefficient of granulates prepared by the fluidization process is
in the 0.3 to 0.6 range. Probably there exists some material whose
discharge rate is greater than that of the standard material pro-
posed, but the rolling tendency coeffic’ ent of the overwhelming ma-

jority of the materials is between 0 and 1.
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MECHANICAL STRENGTH

Mechanical strength means the totality of those prdperties
which express the resistance of the granulatés'against mechanical
stresses [1]. The mechanical stress may.be pressure, impingement,
and abrasion, - etc. Often these actions simultaneously manifest
themselves during the operations carried out with the granulates,
such as shipment,- storage, feeding, and packing. Thé methods used
for the measurement of the mechanical strength . of granulates can
be classified into two groups. The methods belonging to one group
enable the . compressive strength to be determined, and the other

the abrasive strength.

The underlying principle of the methods used for the deter-

mination of the compressive strength of granulates is the follow-

ing. A compressive stress is put on ah individual grahulate grain
and the force is increased until the grain is crushed.The compres-
sion strength is most frequently expressed as the ratio maximum
compressive force before crushing per cross sectional area of the
grain [1, 2, 4, 23]. The drawback of this method is that it does

not adequately model the mechanical stresses acting upon the gra-

nulates in their use.

Abrasion resistance of the granulates means their resistance

against abrasion effects encountered during their application [5,
7, 24]1. Abrasion resistance is most frequently determined by a
sieve analysis carried out after the abrasive action and the
result is presented as the ratio fraction remaining on a sieve of
a given mesh size to the total quantity of sample weighed in. The
methods used to produce abrasive mechanical stress are multifari-
ous. MARKS and SCIARRA [7] applied the Roche pulverization tenden-
cy testing apparatus [25]. FUNNER and his co-workers [26]1 shook
the granulates in a closed container for a given period of time

and afterwards sieved them. DAVIES and his co-workers [5] modified
the standard testing procedure developed for the testing of coal
[27] and abraded the granulates in a rotary shaking-mixing appara-

tus. A standard {24] recommends that as long as there is no ade-



1973 Studies on Granulation in Fluidized Bed I. 223

quate standard for an abrasion testing apparatus, it is preferable
that the interested parties should come to an agreement as to the

conditions of the test.

In connection with studies on fluidization granulation, the
question arose as to the method to be applied for the determina-
tion of the abrasion resistance of granulates. Either the applica-
tion of some sort of shaking apparatus could be taken into consi-
deration, or abrasion in a fluidized layer could be used. In order
to settle this question, a series of experiments were carried out
with a granulate heap prepared in a fluidized layer of a sand
fraction of 0.1-0.2 millimetre size with gelatine as the binding
agent. The experiments were carried out in such a manner that a
given quantity of the granulate heap to be tested was exposed to
different abrasive stresses for a given period of time. Thereupon
the grainbsize distribution was determined by sieve analysis. The
abrasive mechanical stress was brought about in the . following

manners:

a) A 100 gram portion of the granulate was placed into the re-
ceiver of a set of sieves, covered with the 1id, and was
shaken with a horizontal motion at a frequency of 200/minute
on top of a "Labor MIM" shaking apparatus for 10 minutes

(R 1),

b) The experiment was repeated with the above~described parame-
ters in such a manner that 25 steel balls of 8 millimetre
diameter were placed into the vessel together with the gra-

nulate sample (R 2),

¢) A 100 gram portion of the granulate was weighed into a
300-millilitre Erlenmeyer flask, the latter was fixed into
one of the clamps on the side of a "Labor MIM" shaking appa-
ratus and shaken at a 200/minute frequency for 10 minutes
(R 3),

d) A 100 gram portion of the granulate was kept in a fluidized
state in a laboratory fluidizatio.. apparatus of 5 centimetre
diameter (cf. Fig. 3) at a threeic.d layer expansion (Y/Ym =

= 3) with an air stream for 10 minutes {(F 1).
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The results of the experiments are summarized in Table 1.
X is the ratio average grain diameter of the grain heap after
abrasion by average grain diameter of the grain heap to be tested

(percentage).

Table 1

Granulate Granulate after abrasion
to be
tested R 1 R-2 R 3 F 1

Average grain
diameter 0.55 0.52 0.27 0.38 0.41
(millimetre)

X, per cent 100 94 Lo 69 Th

It is apparent from the Table that the horizontal shaking of
the granulate is not sufficiently effective (R 1). If there are
also steel balls in the vessel when carrying out horizontal sha-
king, the abrasive stress is too strong (R 2). Shaking in the Er-
lenmeyer flask (R 3) and abrasion by fluidization (F 1) represént
stresses that are nearly equal to each other. It is an advantage-
ous property of the latter technique that it is simpler and it is
not dependent on a commercial product such as the shaking appara-

tus.

Abrasion tests were also carried out with the fractions of the
granulate heap. The fractions were kept in a fluidized state by an
air stream at a threefold layer expansion for 10 minutes, sieved
on a sieve corresponding to the lower dimension limit, and the re-
sidual material was measured. The value of the abrasive strength

was defined in the following manner:

100 (12)
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s the abrasion strength {abrasion resistance)

(per cent),
s the mass of the weighed-in granulate fraction
(gram),

s the mass of grains remaining on the sieve
corresponding to the lower dimension limit of

the granulate fraction (gram).

The following values were obtained for the abrasion strength

cf the granulate fractions:

d
d
d
d

It
Strength

=0
=0
= 0
1

can
of

.25 - 0.40 millimetre Ko = 75 per cent
.40 - 0.63 millimetre K
.63 - 1.00 millimetre K_ = 62 per cent
.00 - 2.00 millimetres K_

= 64 per cent

H

61 per cent

be concluded from these data that the abrasion

granulates larger than medium is approximately the

same, and slightly decreases with increasing size; furthermore,

the change in the amount of residual material on the sieve is

greater even in the case of medium size than the decrease in aver-

age diameter

he strength

arnd this same

was concluded

when the whole granulate is subjected to abrasion.
of a large number of granulate-fracticns was tested
tendency was observed in every case. Accordingly, it
that for the evaluatidn it is sufficient to determi-

re the abrasion strength

» . of the granulate fraction
<70 ° of mezium  size, i.e.
Z.4-7.£3% millimetre.
.
60 . The abrasicn
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stances and with the use of different relative amounts of liquid
containing the same amount of binding agent. It is apparent from
the Figure that the measuring method can be applied for studying
the dependence of the abrasion strength on various parameters. The
laboratory-type fluidization apparatus (cf. Fig. 3) needed and the
procedure of measurement are simple and the results obtained are
comparable, because the degree of mechanical stress is independent
of the make of the apparatus, as is the case with various types of

shaking apparatuses.
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PE 3RIME

3HaHWEe GH3IUYECHHUX CBOMCTB TPAHYNHPOBAHHHX 38pPBH BAKHO C
TOYHW 3PEHHA HAK HCNONL30BAHWA, TaK W HAy4YHOH WccrnepoBaTens-
CcHOM paboTu. ABTOPOM H3NOWEHH MEBTO4H H3IMEPEHHWR BCTPBYalWHecH
B NuTEpatype, MpHrOAHHE H ONPEAENBHHID BAKHBAWHX (GH3IUFBCHHUX
noxasaTtenes rpaHynMpoBaHHEX 3speH ( pacnpedensHue pasmepps
3epeH, NOHasaTend MAGTHOCTH, AONR o6beMa NoOp, CBOWCTBA WMCTe-
YEeHHA, MPOYHOCTL), @ TaHKe JaH OT4eT 0 pe3yiAbTartax HCccnelo-
BaTeNuLCHOW paboTu, BHMONHEBHHOHW B CBR3H C WCNHTAHWEM NMPHUMEBHW-
MOCTH MEB8TOLR0B W3MEPEHHA, H pas3paboTHOW HOBLX METOL0B U3MBpe-
HHA . ABTDpOM BBEABHE NOHATHA "NNOTHOCTb Pa3puXNGHHHX MHO-
WECTB 3epeH” W "HO3DPUUHMBHT HCTEHEHHA”, W YHA3aHH METOgH K3~
MEPBHUA MNPHMBHWMHE ANA WX ONpejensHWA. Jad oT4eT o pa3paboT-
HE NpocTOro MeToAa WaMEPEHHA ACIH ofbgMa Nop, OCHOBAHHOIO Ha
COHHAHOBLE CBONCTBA 3aN0NHEHWA MNPOCTPAaHCTBA 3epEH MN0ROOHOH
¢opmMu. [nR OrpegeneHyiA NPOYHOCTH NMPOTHB W3HOCA ( n3HOCOCTOW~
KOCTH) FPaHyNMpOBaHHEX 38pEH OMMCaH 4BTOPOM HOBHK METOA W3-
MEPEHMA, OCHOBAHHENR Ha W3MEPEHME OaiCTEMA MEXaHWYECHOW Har-
pPy3H# B NCEBA00OMWUMEHHOM Choe.
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