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Starting from the physical model, basic equations
are derived for the flow of the fluid, particle motion
and changes in particle density along the radius.These
equations enable the fluid-mechanical properties of
fluidized systems to be described.

The basic equations derived are applied to sys-
tems fluidized with e 1liquid, and equations are
presented for the calculation of the inter-granular
liquid flow rate, of the change in grain flow rate
along the radius and of the void fraction.

INTRODUCTION

Various theories have been described in literature for the
description of the fluid mechanical properties, such as expansion
and viscosity of the layer, and the motion of particles, etc., in
fluidized layers [1, 2, 3, 4%, 5, 6] etc. Based on these theories a
number of equations was derived;however, the practical application

of these is cumbersome and difficult.

In the following, based on a physical model, the derivation
of equations enabling the calculation of the most important fluid
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mechanical parameters will be preseunted. Due to the compositeness
of the system and the mathematical difficulties encountered as a
consequence of the complicated connections, a large number of
approximations and neglections had to be applied and consequently
the final conclusions can be regarded only as semi-empirical for-
mulas. However, it was not considered the aim of the present work
to elaborated an exact theory - this being, after all, in the
opinion of the authors quite impossible due to the complexity and
precariousness of the system - but to arrive at connections which
enable the fluid mechanical parameters, necessary for design and
optimalization, to be calculated to an adequate degree of accuracy.

In order to present a fluid mechanical description of flui-
i

dized systems, the physical model illustrated
in Fig.l was taken as a starting point and
the following assumptions and restrictions

were applied. l

a) The particles in the layer are

sphere-shaped; however, they are

b) The streaming of the medium is l l 1 1 1‘ 11

not necessarily of a uniform size. l
described by the Navier-Stokes ‘

equation. According to this, a rate "“[’_’ ‘E‘
r

gradient is built up along the radius. Tl Pp=0 Ty

c) The flow rate of the medium in the

o

direction y is constant, but the
velocity of the particles at a Fig.l

peint y = 0 is zero and in-

creases with increasing y value. This assumption is not
wholly compatible with the uniform flow rate of the medium
in the direction y. However, this assumption is justified
by the good agreement between data calculated by the ob-
tained formulas and determined experimentally. This will

be reported in the next paper of this series.

d) Motion of the particles along the radius is brought about
by the dynamic equilibrium of two forces. The rate profile
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in the direction of and decreasing with the radius tends

to force the particles 4in the direction of increasing w
radius. It can be shown that - were there no force of
opposite direction - a minimum resistance of the system
would be obtained in a extreme state, where all the par-
ticles would adhere to the wall of the apparatus and the
medium would stream in the space enclosed by the annular

cluster of ‘particles. The unoriented motion of the par=
ticles, brought about by random fluctuations in the flow
rate of the medium, acts against this force of centrifugal
nature. If the particles were of uniform size, these
fluctuations would cause collisions more rarely and would
manifest themselves in a wave-like expansion or! contrac-
tion. On the other hand, if the size of the particles is
not identical, random fluctuations will cause frequent
collisions and the particles will be forced - in a manner
similar to the process of gas diffusion - in the direction
of lower particle density, i.e. in a centripetal direction.
In steady state, the radial density distribution of the
particles is determined by the equilibrium of these two

forces.

In order to present a fluid mechanical description of a
fluidized 1layer, it is necessary to known the values of radial
changes in the flow rate of the fluid streaming between the par-
ticles, the particle flow rate, and the void fraction.

FLOW OF THE FLUID

In order to describe the flow of the fluid, the Navier-Stokes
equations, written for the case of eylindrical co-ordinates, can
be used. The equations are the following [7]:

dul dut u' Juf u' aul
9' R + uﬁ ____P_( + _?- __R. J. + ul _.3 =
RS ar r 3¢ r y 3y
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’ 1 : 2,1 1 2,1
_{L[__‘_l]____i_"} (0
dr dr Lr ar r2 302 r? 3¢ 3y2
du' au' u' au' uéu' Iy !
p! — 9 oy — 2 _ 2, RO o9 =
3T ar r 239 r y 3y

ap 3 a(ru') 32u! Ju! 32u!
= -1 — 4 u'{ —_— [l-————jL-]+ A e, 2 e, gLsp (2)
r 3¢ ar

3u! au' u' 3u’! au’
pt(_.!_’.“'_l*_._{.__x...u'—l =
T ar r 29 ¥ 3y
du’
3ap 1 ¥r —X) 1! 32u? 324!
=___+u.[_____2L__+____1+___z*p (3)
3y r ar r?2 392 3y? ¥

There is no acceleration at a given point of the layer and accor-

dingly we can write:

dul du' su’
R._®2:_Y:9 (%)
9T 3T 3t

The pressure does not alter with changing r and ¢, and consequently

3p ap

Ir 39

(5)

"
o

The system is of cylindrical symmetry and so we obtain:

3u! 32u! 3u' 3y ou' 32y
—B: R. 2. ¢ _JY:__2:0p (6)
20 292 39 392 39 392

There is no force acting upon the system in the direction r and ¢:

P, =P =0 (1)
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It is assumed that the system does not flow in the directions r
and ¢:
dul dul 32u! du’ au! 324!

R R R 9 @ ]

u' = —— = —2 oz = = —t = = 0 (8)
2 5y ar 3y2

1
Ugr

It follows from assumption (8) that:

au! 32u!
:—L =0 (9)
3y 3y2

From Equation (1), (2) and (3), «considering Equations (u4), (5),
(6)Y, (7)), (8) and (9), we obtain:

dp 1 4 du’
— =y - (r —¥) + p (10)
dy r dr dr ¥

The pressure in the layer is proportional to the weight of the

layer [81:
op = A; [e(p - p') + E'p'] gy (11)

from which we obtain:

dp

ay

= Mg [elp - p") + €'p'] (12)

The force acting upon the unit volume is equal to the sum of the
force acting upon the particles plus that acting upon the fluid.

The force acting upon one particle is, according to Stokes,
proportional to the difference in the velocities of the particle

and the fluid [91:

(13)

If the difference is equal to the veloci=ty of the free fall of the
particle, it is self-ecident that the ~orce 1is equal to the

Archimedean weight of the particle and w- 2an write:

vg(p - p') = aju, (14}
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The force acting upon the particles present in the unit vo-
lume is, as derived from Equations (13) and (18):
vele 1) ) (15)
P =—{(u! -u 15
u y ¥y
e
The force acting upon the fluid present in the unit volume
is:
P' = g'p'g (16)

The sum of the forces acting upon the particles and the fluid
present in the unit volume is, on the basis of Equations (15) and
{(16), further Equation (5), the following:

glp - p")e >

p = - (u; - uy) +e'p'g (17)

u
€

The flow of the fluid can be described, on the basis of
Equations (10), (12) and (17), by the following formula:

Alelp - p') + €'p'lg =

du’ ge(p - o')
= ut L d (, &y s —  (u! -u) +e'p'g (18)
r dr dr u y y

Motion of the Particles

In the following, the equation describing the motion of the
particles will be presented. On the basis of the second Newton’s

Law, and taking Equation (15) into consideration, we can

du vip - p'le

vp =z —————e— (u!' - u_ ) - vip - p')e (19)
dr u, y y

After rearrangement and introduction of relative variables we

obtain:

dury . (p - 0")g

u' - u - 1) (20)
ry ry

-84 pu,
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The starting condition is:

Uy (o) = o ) (21)

The solution of Equation (20), taking starting condition

- Eq. (21) - into consideration, is:

(p - p')gr
Uy = (ux"y - 1) {1 - exp[— ———————]} (22)

Due

Velocity can be written as the differential quotient of displace-

ment according to time:

ay (p - 0')ge (23)
— = u (u' - 1) {1 - exp[-— e — 23
dt e ry pn
e
The starting condition is:
u(0} = o0 (2k)

The solution of the differential equation, considering starting

condition -~ Equation (24) - is the following:

(u'_ - 1)u? (p - 06')gr
¥y = (ul - l)u T - u{l - exp[- ——————}} (25)
Ty € (p - 0")e ¢ pu,

Rearranging Equation (25):

u_p f (p - p"lgr
¥y = (u'_ - 1)u r{[l— = ]l-exp[—————]}}(ZG)
Ty € (p - o')sr,‘l pu,

exponential expression by the first

Let us approximate the

two members of the series, i.e.:

- p! 1
(p - p')gT (27)

pu 1+
e
pu,

It was found that a comparative te:t made with the degree of

approximation - Equation (27) - showed the approximation tc be
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better 1if a coefficient of 0.85 1is wused. Accordingly, from

Equations (26) and (27) we have:

(p - 0')ar
pu
y = 0.85(ul - 1)ut 0 _ep,)gT (28)
1+ ————
pu

By solving the Equation (28) for t and introducing the
dimensionless quantity:
- ]
glp p )Ymem

Ay = ——————— (29)

2
pue

we arrive at:

y 3.4 e(u'. - 1)
21 = 1+ \[1 4+ Iy (30)
0.85 u_(ul - 1) Ay

The mean velccity of the particles along the height is:
i = L (31)

The mean relative velocity of the particles along the height, as

determined from Equations (30) and (31), is

l.7(u;y - 1)

ry
3.4 g(u' - 1)
1+ \/; + Iy
Ay

Changes in Particle Density Along the Radius

1f a difference in particle density is built up in the
fluidized layer along the radius, a streaming of the particles
along the radius will start in consequence of this difference.
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This equalization process can start only if the particles perform
an oscillating motion, since in the case of stationary particles
the difference in particle density is not a sufficient cause for
the motion. If the particles are floating, their oscillating
motion can be observed even by the naked eye. The cause of this
phenomenon is - in‘all probability - the fluctuation of the fluid
flow rate in time. The latter has been measured by a number of re-
searchers, e.g. by AEROV [10] among others. The Equation (3)
serving the fluid mechanical description of fluidized layers can

be derived on the basis of the foregoing.

The volume of the particles moving during unit time from one
granular layer into another granular layer in a cylinder jacket of
the radius r and the height dy is proportional to the surface
area of the particles present at the cylinder jacket (2nredy)
and to the vibration rate. A fraction of the arriving particles
corresponding to the void fraction (e') enters the neighbouring
layer at a distance Y_, and accordingly the volume of the arriving

particles (dvI) is:

dv = 2weru_ 4y (33)
I v

The volume of the particles returning from the neighbouring layer
(dvII), if the void fraction was decreased by Ae, while r was

increased by Y., is the following:

avyq = Qneuvdy(r + Yv)(e' - Ae') (3h)

The resultant volume of the transient particles (dVIII) is, evi-

dently, the difference of the two volumes:

dvIII = dvI - dvII (35)

and consequently from Equations (33), (34) and (35) we obtain:

= = [ ' 6
av = Zwuvedy(rAz' Yoe' + Y Ae ) (36)

III
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The expression YvAe' is a secondary small value and may be neglec-
ted:

Ae'Y R 0 (37)

By approximating the e'(r) function by a continuous function:
1]
pet ey, 36— (38)
v
dr

From Equations (36), (37) and (38) we obtain:
dv = 27u_Y edy (r de’ _ e') (39)
vy ar

The particle volume that passed during unit time can also be

expressed by the velocity of the particles along the radius:

dvIII = 2weuery (40)

The particle velocity along the radius is, according to Equations
(39) and (40), the following:

u = -~ uY (EL - QE"'-) J (41)

The distance between the particles may be regarded as equal
to the vibrational length of the particles; the product of the
latter and the vibration rate may be termed the vibration coeffi-

cient:

K = u Y (42)
v

The continuity rule is:

du a, ' du
—-..-—R + .—-—R + -—1 = [s] (l‘3)
ar r 3y

From Equations (ul), (42) and (43) we obtain:
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d?e Ju

K, = - (k)
ar? 3y

Let us take the integral means according to height:

£ oy .dy = ; [(“y)y=Y - (uy)y=0] (45)

1
Y

As a first approximation, arithmetical means may be taken:

i = (wydymy * (3y)y=0 (46)
¥ 2

When taking into consideration:

(u_) = 0

Yy'y=0
starting condition, on the basis of Equations (uu4), (45) and (u46)

we obtain:

d2€' u!
‘ 3 (¥7)
vooar? 2y

By introducting relative variables and the dimensionless

expression:
R2u
Ag = (48)
2YK_€
and considering identity:
(59)

e + g' =1

from Equations (32) and (47) the following formula is obtained:

2 0.85 (u' - 1)
e Ag ry (50)
drz g [
3.4 £(u - 1)
f R )
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Equations (18), (32) and (50) can be regarded the three basic
equations which enable the fluid mechanical properties (fluid flow
rate between the particles, particle velocity and changes in void

fraction) to be described.

The Effect of Layer Viscosity

In the foregoing, the influence of the viscosity of the layer
was not taken into consideration.If we were to endeavour to formu-
late a correct mathematical model, our eguations would become
complicated to such an extent that their solution would be ab ovo
impossible. Accordingly, a very rough approximation, described in
the following, was adopted. This approximation is, however, a true
model of the systems, as far as the tendencies are concerned. A
fluidized layer, a uniform streaming system, will be considered
This system streams in the tube as a consequence of the force
exerted by the fluid upon the particles. The simplified Navier-
-Stokes equation (10) can be applied for the description of this
process, very much as was done in the description of the streaming
of the fluid, the only difference being that in this case it is
assumed that the pressure of the layer is zero due to the floating
of the particles.The solution of the equation enables the particle
velocity in the middle of the layer to be determined in the case
of a viscous layer and also if the viscosity is zero. The proposed
approximation is that the ratio of the two velocities in the case
of a fluidized layer is equal to the velocity ratio thus obtained.
Accordingly, the equation - based on Equations (16) and (19), and
taking the force acting upon the particles into consideration -
will be the following:

Mo, a2u 1 du
fl e ( r r {51)

(o - p')gelur. - u_ ) - {(p - p')ge =
ry r R dr: r drr

Considering the state when the particles are no longer acce-
lerated. In this case, taking Equation (22) into consideration, it



1973 Studies on the Hydrodinamics of Fluidized Layers 1I. 197

is true that:

' - =
ury ury 1 (52)
Introducing a new symbol:

u = u + Au (53)

From Equations (51), (52) and (53) we have:

dur
d(r_—
Y. u ] r dr
Aufp - p')ge = 2 | — T (5k)
R2 r dr
r r
Boundary conditions:
dur
e =0, wuf1) = o0 (55)
r
r_ =0

By neglecting the changes in particle velocity difference along

the radius:
.~ 0 (s6)
By the introduction of the dimensionless quantity:

bra% (57)
{(p - p')egR?

As*

the solution of Equation (54) is:

u

u, = —t (58)
T o1+ ag

In accordance with the foregoing, u is wmitten in place of Upy®
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= uy/ue in‘Equation (18), 1.7/(1 + Ag) is written in place of 1.7
in Equation (32), and Ag/(1l + Ag) is written in place of Ag in
Equation (50).

Changes in the Liquid Flow Rate between the Particles and in the

Particle Velocity along the Radius

In the case of fluidization with a liquid it can be shown by

substitution of numerical values that:

u, & 8T (59)

By taking this into consideration, from Equation (26) we obtain:

= ' -
y (ury 1)uer (60)
Accordingly, the mean relative particle velocity - taking the
effect of viscosity into consideration - is the following:
(u! - 1)
u = xy (61\
r 1 + Ag

Accordingly, from Equation (50) we obtain:

dzer uto -1
= pAg —l— (62)
2

ar?
r

In the case of fluidization with a liquid, the value of Ag is low
and consequently it follows from Equation (62):

da%e
r

= 0 (63)

ar?
r

On account of the cylindrical symmetry:
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de
r

drr =0
r

and consequently it follows from Equations (63) and (64), since
(er)rr = 1 that:

e = 1 (65)

On the basis of Equation (11), if y = Y:

Ap

((p - p')e + pTe'lgyY

From basic Equation (18), considering Equationé (61) and (65) we

obtain:
- 1 d du!'_ - -
A[e(p-p') + €' - p'lg = u' — — rr———z + glp-p'le + €'p'g (67)
r drr drr

By introducing the dimensionless quantity:

. wra,
Ay = = - (68)
RZ[(p ~ p')E + p'e'lg

and rearranging Equation (67) we obtain:

1 da du'

(A = 1) = Ap — — rr-£l (69)
r_dr dr
r r r

Boundary conditions:
du’
(__El) =0; ul (1) =0 (70)
dr_/r_=0 y
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The solution of Equation (69) is the following:

1 - A
ul o= —— (1 - r2) (71)
y L oA, r

With the use of Equation (61), the following formula is obtained
from Equation (71):

1 1 - A
u_ = (1 - r2) -1 (12)
1 + Ag L & A, v

The volume of the particles moving upwards or downwards

during unit time is identical; accordingly:

1
{ 2wrrEurdrr = 0 (73)

From Equations (72) and (73):

1 - A
—_ =2 (T4)
h A,

The liquid flow rate between the particles along the radius

- on the basis of Equations (71) and (74) - is the following:
= - 2
u;y 2 (1 rr) (75)
The change in particle velocity - on the basis of Equations (72)
and (74) - is:
2 (1 - ri) -1
u, = (16)

1+ Ag

The maximum relative particle velocity:

a = — (17)
rM 1+ As
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CALCULATION OF THE VOID FRACTION IN FLUIDIZATION WITH A LIQUID

On the basis of gepmetric considerations the following iden-

tities are valid:

nad
" z ¢ (78)
6 a7
rd?
" : E (79)
L az
It follows from Equations (78) and (78):
8
— /%= . (80)
6Jr

By applying the continuity rule to the streaming of the liquid:

R
f 2nu'E'ar = = R2U! (81)
5 y

Considering Equations (65) and (80):

E'u_ = U (82)
using the identity:

E+E' =1 (83)
we obtain from Equation (82):

ur = ue(l - E) (8L)

The particle volume fraction can be obtained from Equation

(84) with the application of Identity (80):



-
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372
e = -8 ( - U—) =0.75 (1 - un)3/? (85)
C 6T u r

e

The formula is valid even at the minimum fluidization velocity:
. 3/2 .
= - ' .
€ 0.75 (1 Ur ) (86)

The void fraction can be calculated from Equations (85} and (86),
considering also Equations (49):
1 - ¢!
m

1 - g!' =& —_— (1 - Ul)3/2 (87)
. y3/2 r
(1v_ Urm)

The results of validity tests carried out in connection with
Equations (85) and (87), derived for the calculation of the expan-
sion of fluidized layers, will be reported on in the next paper of

this series

USED SYMBOLS

a constants

A composite, dimensionless characteristics

d diameter of the particles (m)

E cross section fraction of the particles (m2/m2)
E' free cross section fraction (m2/m2)

F cross section of the layer (m?)

g graviational acceleration (m/sec?)

K, vibration coefficient {m?/sec)

P pressure (kg/m sec?)

P force acting upon a unit volume (kg/m2?/sec?)

P force acting upon a unit volume in the direction y (kg/m2sec?)
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Pv force acting upén a unit volume in the direction 9'(kg/mzsec2)

Po force acting upon a unit volume in the direétion R (kg/m?sec?)

r radius co-ordinate (m) |

R radius of the layer (m)

u, fall velocity of~the:particles (m/sec)

Gy mean velocity of the particles along the height, if the
viscosity of the layer is zero (m/sec)

u mean particle velocity (m/sec)

uy, particle velocity along the height (m/sec)

u, vibration rate (m/sec)

ug particle velocity along the radius (m/sec)

u' flow rate of the medium (m/sec)

ﬁ; mean flow rate of the fluid along‘the height (m/sec)

U§ flow rate of the fluid along the radius (m/sec)

u; flow rate of the fluid along an angle (m/sec)

u! flow rate of the fluid along the height (m/sec)
U feed rate of the fluid (mé/mzsec)

Ul minimum feed rate of fluid (m3/m2sec)

v volume of the particles (m3)

¥y height co-ordinate (m)

Y layer height (m)

Y minimuﬁ layer height (m)

Y vibrational lenght (m)

dp pressure difference (kg/msec?)

€ particle volume fraction (m3/m3)
€ mean particle volume fraction (m3/m3)
€ minimum particle volume fraction (m3/m3)
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€. relative particle volume fraction (dimensionless)
c! void fraction (m3/m3)

€' mean void fraction (m3/m3)

€L minimum void fraction (m3/m3)

s; relative void fraction (dimensionless)

u' viscosity of the fluid (kg/sec m)

LISy viscosity of the fluidized layer (kg/sec m)

o density of the solid phase (kg/m3)

p! density of the fluid (kg/m3)

T time (sec)

[ angular co-ordinate (degree)

Markings

A straight line drawn over the symbol: ": mean value.

A letter "r" on the lower right-hand side of the symbol: relative
quantity.

No marking on the upper right-hand side of the symbol: solid phase.

A comma on the upper right~hand side of the symbol: ': fluid:

liquid or gas.

Relative variables

¢ ]
[+
"
«
e

=

u ry
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(=4

ur =
u rm

T R ry

r = rM

o]
]
g1
]

o“lxﬁ mc:p’:: mzla
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PE3{IME

HNexons M3 PUIMHECKON MOLENH, aBTOpH M3farawT BHBOA OC-
HEBHHX YPBBHEHWIA AQNA ABUHWEHWA 3B8PEH W H3MEPEHWA MNOTHOCTH
38pEH BAONL paguyca, NPHrogHEX ANA ONWCAHWA FUAPOJAWHaMH4YE-
CHHX YCNOBWH NCEBAOOMHMEHHBX. CHCTEM.

BueepgexnHue YpPpaBHEHHUR NpUMEHEHE aBTOPamMu ANA cCHCTEM
NCeBAOOCKHHKEHHBX C NOMOWLID MHAKOCTH, NpeaACTaBABHH HMH COOT-
HOWEHHA ANA BHYHCNBHWA CHOPOCTH MHOHOCTHU MEHAY 38pHaMu, CHO~
pPOCTH 3epeH BAOAL pajuyca, a Tauwe W N0nH ceofogHoro o6bema.

1.
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