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The material systems of technical chemistry, the
changes occurring in these, their interpretation and
their mathematical description are presented in this
paper.

The qualitative description of the material
systems was provided by determining

- the components present in the system,
- the relations between the components and
- the state of the system.

A quantitative description of the systenms is
presented by a matrix structure.

The technical chemical changes are characterized
by the nature and type of the change and so it was
possible to define the most important elementary chan-

ges.

Technical chemistry deals with material systems and with
changes occurring in these [1] and the algebraic description of

these will be given in the following.

—————— e

*TPhe first publication appeared in Fung.J.Ind.Chem. 1, 17 (1973).
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DESCRIPTION OF MATERTIAL SYSTEMS

1
Qualitative Desecription

The starting point for the mathematical formulation of the
systems is the following.

The material system is characterized by
- the components present in the system,
- the relations between the éomponents, and
- the state of the system.

According to the above-mentioned characteristics, the mate-
rial systems can be described by the following mathematical struc-

ture:

A = A{K, P, T} (1)
where

P - is the pressure,

T - is the temperature,

x>
'

is the mathematical structure describing the
components and the relations between these
components.

The relation between the components may be

-~ homogenous, such as e.g. in the case of a mixture of liquids or
a solution of a solid. The designation of the homo-
genous relation is the following: ——>

- heterogenous, such as e.g. a liquid dispersed in a gas or a humid
solid. The designation of the heterogenous relation
is the following: —

The components can be characterized by the following struc-
ture:
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K=K {ay4, o155, 216, B, a3, ay, as} (2)

where the first four elements designate a qualitative, whereas the

others a quantitative property:

ajy = crystal structure,

215 ~ chemical structure,

a1 — biological structure,
B ~ the state of the pure components of the mate-

rial system pertaining to a pressure P and
a temperature T. This may be

81
Bz
83
By

solid
liquid
gaseous
plasma

a3 =~ scattering; the distribution of the component
in the material system. The distribution

may occur according to space co-ordinates

or according to time.

The distribution according to space co-ordinates may be
characterized by the scattering as used in the probability calcu-

lus:

1 (e ~ c)2 av
v

(3)

a?

fIJ av
v

or with the entropy of mixing:

fff ¢ 1n ¢ av

v

. A (%)

kK Zainc ffJ av

where

< 0ot o

v

- is the concentration ¢i the component,
- is the mean concentratiosn of the component,
- is the volume of the system.
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The fluctuation in time of the distribution of the component

in a given point is

t

02 =% [ (c-3)? at (5)
(o]

a* - is the characteristic dimension of the state of appearancé of
the component. Should +this not exist, a "zero" is written in
the algebraic structure (2) to the corresponding place. The
dimension can be described 'e.g. by the equivalent sphere
diameter, mass, volume, surface area, or also by the following
expression:

(o] n
= B 6
ay G ()
where

n - is the number of entities in the component,

G - is the mass of the component.

a5 - form. This can be given by the form factor (¢), by the ratio

of characteristic dimensions, etc.

In accordance with Equation (2), a mass of spherical (¢ =1)
y-ferric oxide particles, 1 mm in diameter, can be described by

the following structure:

K(y ferric oxide) = Ky, Fez03:0, 81, 0, 1, ¢ =1} ()

It is not always necessary to describe the components by the
total mathematical structure. It is sufficient to describe only
such elements as are of importance in the given individual case
(e.g. which undergo some change in the process where the raw mate-
rial is transformed to a final prodﬁct).

if, for example, only the chemical structure of the component
is of iInterest, we may write:

¥ = X{Fe,03. ferric oxide
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or if only the state is of importance:

K = K {8;} solid component

When writing the expression for the components and the rela-
tions between them, the component determining the state of appear~
ance of the system should be written in the first place. If the
system is determined not by any one of the components but by their
joint entity, the order in which the structure is written is of no
consequence. In such a case, the designation of the homogenous re-
lation is <> and that of the heterogenous one is < ,

A few examples for the homogenous relation between the com~

ponents:

K1 (B2} & K, {83} (8)

LR
"

liquid mixture:

=
L)

solution of a solid: Ky {B2} =—> K, {B;} (9)
a solid dissolved in

a liquid mixture: K = [K;{By} «>Kp{8p}] => K3{8;} (10)

Examples for a heterogenous relation between the components:

humid solid:

IE = Kp{B1} — Ki{B2} (11)
suspension:
K = Ky {8} — Kp{B81} (12)

gas bubbles in a liquid:
K = K;{82} — K{B3} (13)
liquid droplets in a gas:
K = K{83) —> K;{82} (14)
liquid mixture dispersed in a gas:
K = [K;{B3} €=> Kp{83}] — [K3{By} €« Ky(82}]1  (15)

The material systems which ca- be realized by relations

between the components are summarized in "able :.
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Table 1
Component 2.
Nature of Solid Liguid Gaseous
relation Component 1. 81 B2 B3
Determining
liquid adsorbed gas dissolved
= at a solid in or ad-
. phase sorbed at a
o solid homogenous solid phase
g &= 8 solid-solid
[} 1 system; mixed
o crystal,alloy,
° glass
0 . .
: . . solution of a gas dissolved
: = 11‘;‘2‘“‘ solid in a liquiad
liquid mixture
)
S = gas sublimated liquid wvapour
matter in a in a gas
3 B3 gas
gas mixture.
non-dispersed 1liquid moving gas moving
— solid-solid together with together
solid system solid with solid
81 mixture of thick slurry non-disper-
solids sed hetero~
° genous
solid-gas
3 system
o
o suspension emulsion gas bubbles
o in & liquid
" liquiad
8 thick slurry non~dispersed, non-disper~
° 2 immiscible sed liquid-
M — ligquid-liquiad -gas system
[ system
+ - :
° flue dust in liquid droplets
—_— a8 gas
yel gas
B3 non-dispersed non-dispersed
heterogenous ligquid-gas
solid~-gas system

system
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Quantitative Description of Material Systems

The material systems can quantitatively be described by a
mdtrix. The 1line vector (2) giving qualitative description is
applied and resolved to two parts: one part describing the compo-

nent

K* (ayy, a15, a1, B) (16)
and the other describing the phase:

K'' (B8', a3, ay, as) (17)

In the case of more than one component and more than one
phase, two matrixes are obtained. The component-matrix is the

following:

(e1y)
(e15)1

(a16)1

(a1y)2 v
{ays)2 ...

(“16)2 e

(18)

(8) (8)2 oo
and the phase-matrix:

(8' ) (a3)y {ay ) (ac)

(B')> (a3)2 {ay)2 (ag)2
(19)

A quantitative matrix containing as many lines as the number of
the phases .and as many columns as the number of the components in
the system is obtained from the above mentioned two matrixes
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[ (ayy): e
(a15) cee
(u15)1 e

(8) cee
L ! - (20).

(B')y (a3)1 f(ay)1 (as)h [(x11 x12 cee ]

where x is the weight fraction.

A further column vector, containing the information valid for
the whole material system, is added to the matrix system.

a1, t

az, Y

a3

a7, (T) (21)
ags P

W

gt

where
a] is time; ty in the starting state, t_ in the final
state, O in the case of a stationary system,

as is place; Yo' input, v exit; 0 if there is no
change,

ajy is the scattering of phase distribution,
ay is the temperature,
ag is the pressure,

w is the mass flux, if a; = O, or the mass of the
0,

system, if a,
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B! is the state of the phase,
g'' is the state of the material system.

For example, let us consider a material flux of a rate 15
kilograms per hour, T = 20°C, P = 1 atmosphere, containing uni-
formly dispersed NaCl particles of 1 millimetre size and of a form
factor of 0.7 at a ratio of 0.2, suspended in a solution containing
60 per cent ‘water, 20 per cent ethyl alcohol and 20 per cent NaCl

solution. For this case we can write:

e 0 0
NaCl H20 02H50H
0 0 0
L B1 B2 Ba |
Yo - -
0 82 0 0 0 0,16 0,48 0,16
20 81 0 1 0,7 10,2 0 o |
1
15
L B2 |

Operations such as addition and subtraction can be carried
out with the matrix systems. However, only matrix systems in which
the phases and components are same and equal, can be added or sub-
tracted. Should this not be the case, the matrixes should be com-
plemented.Prior to addition or subtraction the x-es are multiplied
by W, the elements of the quantitative matrixes thus obtained are
reduced ' and divided by W, + wz. The elements of the qualitative
matrixes remain unchanged and the reduction of the elements of the
column vector is only indicated.

Various functions such as e.g. specific heat, can be inter-~
preted by the matrix structure.In this case, a Ci, value pertains
to every Xi,j value,and if it is an additive property, the C value

put into the column vector can be written in the following form:
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C = XX x., «C, (22)
The qualitative mathematical structure can be supplemented by the
property designated by C:

A (x*, p, 7, C} (23)

where C represents in the above-mentioned example the specific
heat of the material system. As already mentioned, only the rele-
vant parameters are given in a number of cases; in the example
this may be the specific heat only, and accordingly the short
mathematical structure is the following:

A {c} (24)

The quantitative description of material systems can also be
performed in the following manner,

The component is described by a column vector

ais {25)

and the phase by a line vector
[g'y a5, Ty P, ¥, t] (26)

(The designations are the same as used in the foregoing.)

In the description of non-streaming materidl systems the

following quantitative parameters are given for all of the compo-~
nents of all of the phases:

g =~ mass
v = volume
n - numericality
s, -~ entropy of mixing
The parameters are indexed according to the components (i) and

phases (j), for example:

€i,3
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The following specific quantities are interpreted:

weight fraction:

g.
ey g = = (27

volume fraction:

e = Lad (28)

. i,d VJ
phase fraction:

v
€ = —-J—-— (29)

density:

-3
= —iad (30)

mean mass:

_ g
gy = —;i— (31)
J
specific entropy of mixing:
S.
S? 3 = _lL1 (32)
’ gi,j

In the description of streaming material systems the follow-

ing quantitative parameters may be given:

W - mass flux
p - volume flux
m - numericality
£ - flux of entropy of mixing
In a way analogous to the foregoing, the following specific

quantities are interpreted:

weight fraction:

W,
e, = =l (33)
i,3 W
4
volume fraction:
P
e, , = —ad (34)
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(35)

.(36)

(37)

(38)

17k T. Blickle, Mrs, E. Bidtor and Mrs. Zs. Halész
phase ratio:
p
e, = —id—
Ix Py
J
density:
[ _Li "'L
i3 b,
»J P; .3
mean mass:
F Y]
i .
»J ml,J
specific entropy of mixing:
L.
s® = —2ad
g
The Mt quantitative matrix of a non-streaming material sys-
tem:

(8'")1, (as)ys Tys P14 tl]

(@14)1 soevnvennn (alu)i
(215)1 covvecenns (als)i
(a16)1 covvvvenes (ale)i
(8), . - (8); .

(S'V,n,sk)l"e Y

(g!v’n's

LAY

..

k'i g °°°

(B')J. (°5)J‘ TJ’ PJ' tJJ (g,v,n,sk)l,J . (g,v.n,sk)i.J .

(39)

The Mg quantitative matrix of a streaming material system:

(831, f{as)i, T1, Py, Y11

' ? ~r
(8 )J, (US)J, Tj’ }":a.l

R“lk)l Creareees
I(u15)1 sees et ey (als)i
‘(015)1
BB)}

. (u]k)i

(kw,p.m,l)l R

{
N

w,p.m,&)l'd cae

r

(w,p,m,2);

(Vsp"m"e)i'l
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The matrixes given in Equations (39) and (40) can, according
to the experience, be more easily applied for the quantitative
characterization of material systems, than the quantitative matrix
described by Equation (20).

TECHNICAL CHEMICAL CHANGES

.

The changes can be considered as to

the nature of the change and
the type of the change.

The following designations are introduced:

the characteristic is designated by e

the type of the change by v

the nature of the change by s

the change by V

the various material fluxes are designated by "o",
the designation of "and" is A
and that of "or" is V.

The nature of the change (6)

- Linear change: §;

in graphic representation: A; ~— o ~> A, i.e. material system
Ay 1is changed to material system A;. Such changes are e.g.

transportation or a change in temperature.
- Combining change: §;

Ay

N
e

Ay

0o == Aj

Two material systems are combined tc give a third one; e.g. com-
bination of two material streams, disc:lution, chemical combina-

tion.
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- Resolving change: &3

A] 0

LY

e.g. separation of two material streams, crystallization, chemi-

cal dissociation.
- Exchanging change: &,
Ay Aj
~.
Az/' .
This is the change of the most general nature in which two mate-
rial streams are changed so as to yield two other material

streams. For example, adsorption of a solute, mutual chemical

exchange, etc.

From now on '"the nature of the change" will be applied
in generally sense. In written form an index (1-4) before the V
will refer to the nature of the change.

The Types of the Changes

a) Change in the place (aj): v,

{The direction of the change is shown by the sign #.)
The nature of the change may be &, V 6, V §3.

Linear change:
+ +
V1 = vi A& (41)

Such is e.g. transportation.

Combining change:
2V = vy A Sy (lI»Z)

E.g. combination of two totally miscible streams.
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b)

c)

d)

Resolving change:

3V = vy A 83 (43)

E.g. resolution of a stream into partial streams of identical

properties.

Change in the scattering (a3): v,

A change according to the place or time co~ordinates in the
distribution of any of the characteristics is representated by
the change in scattering. Increasing scattering is given a po-

sitive sign, decreasing scattering a negative sign.
The nature of the change may be: &y

Vs = vi A8 (44)

E.g. pressure-equalizer buffer vessel.

Change in the dimensions {(ay): v3

The nature of the change may be: §1 vV 82 Vv 83,
Linear change:
1Vg = v3 A &g (Ls)
E.g. increasing or decreasing of dimensions.
Combining change:
2V3 = v3 A &y (46)

E.g. supplying a dimensionless body with dimension (freezing).

Resolving change:
V3 = v3 A &

E.g. abolishment of dimensions (sublimation).
Change in the form (as): vy

The nature of the change may be: §&§; v 6, v §3.
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e)

f)
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Linear change may be the change 1in the form of the material

system along a favoured direction (t),
Vi = vi A & (48)

Combining change may be supplying a formless system with form:

2aVy = vy A &y (49}
Resolving change may e.g. be the abolishment of form (melting):

3Vy = v A 83 (50)
Change in the temperature (ag): vs

The nature of the change may be: &§; v 8§, v &§3.The change in the
temperature may be brought about by processes occurring in the
material system (e.g. evaporation, consideration) or by an

exchange of energy.

Linear change: change in temperature without external energy

exchange:

Vs = viA & (51)
E.g. heat exchange.

Combining change: the temperature increases by the introduction
of external energy:

2Vs = vg A 65 (52)

Resolving change: the temperature decreases in consequence of
heat extraction:

3V5 = Vs A 53 (53)
E.g. expansion-type refrigerators.
Change in the pressure (az): vg

The nature of the change may be: &y v §, VvV §3.
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g)

The change is a 1linear one, 1if the change in pressure occurs

without the action of external energy:

Vi = Ve A&y (54)

such as boiling or condensation.

The change is- combining, if the pressure is increased by the

action of external energy:

2Ve = ve A 82 (55)
e.g. compression.

The change is resolving, if the pressure is decreased by the

action of external energy:

3Ve = ve N Sy (56)
e.g. expansion.

Change in the state (ag): vy

The nature of the change may be only linear. The direction of

the change may be positive:
V7 = vil A 8 (57)
e.g. a liquid is produced from a solid. Or it may be negative:

ol o= vl A & (58)

e.g. a solid is produced from a liquid. Fquations (57) and (58)

describe one-step changes in state.

In general form:

b T
Ayo[Ba] + V2 = Ayv[85+l] (59)
a = 1, 2
where A = initial,
yo
A = final material system
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1 =
Ayo[Ba] + 1Vy = Ayv[aa-l} (60)
a = 2,3

Two-step changes in state
A gas is produced from a solid:

A [gy] + V32 = A_ [83]

yo' Bl 1V7 yv B3 (61)
A solid is produced from a gas:

-2
Ayo[Ba] + vy = Ayv[el] (62)

h) Change in the phase ratio (ag): vg
The nature of the change: &8, V 63 V 84

Combining change: a heterogenous system is produced from separa-
te material streams, or - with different wording - material

streams are united to a heterogenous system:
2Vg "= vg A 683 (63)

A o A

voul + ,Vg = A — A (64)

¥0,2 yv,l yv,2

e.g. preparation of a suspension.

Resolving change is, naturally, the resolution of a heterogenous

system
3Vg = vg A 683 €65)

o A (66)

A — A + 3Vg = A ¥v,2

yo,l yo,2 yv,l

e.g. filtration of a suspension.
Exchanging changes place the heterogenous connection to between
other phases.

WVg = vg A 8y (67)
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i)

i)

(g, — Bb] o A

Ayo,l a [801 + uVg =

yo,2

= A [Ba] o A

vl (6, — 8,1 (68)

yv,2
e.g. humid dust separation.

Change in the ratio of components within the phase (aj;g3): vy

The nature of the change is: 8, Vv 83 V §,.

The change is combining, if heterogenous phases are united to

give a homogeneous system:
2V9 = Vg A 62 ) (69)

Ayo[Ba — B,1 + 5V = Ayvtea == 8,1 (70)

The change may be regarded of resolving nature, if a homogenous

system is resolved into a heterogenous one:
3Vg = vg A 63 (11)

AyOCBa::Q Bb] + 3Vq = Ayv[ﬁy -— Bb] (72)

e.g. crystallization by cooling.

Exchanging changes occur with transportation of the homogenous

relation:

MV9 = Vg A 6“ (73)

Ayo((Baz) Byl 8.1 + Vg =

= A (8, = B8) — 6] (74)

e.g. crystallization by salting out.

Change in the crystal structure (aju}: Vig

The nature of the change may be: &y v &; v é3.
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Linear change is a change in crystal modification; e.g. a-iron

is transformed to y-iron.
1Vig = vig A 8, (75)

Ayo[(alq)ll + 31Vip = A v[(“lk)z] (76{

y

Combining change is the production of a crystal structure, e.g.
in a crystallization process.

2Vio = vip A &3 (77)

Resolving change is the abolishment of crystal structure, e.g.
melting.

3Vip = vig A 83 (78)

k) Change in chemical structure (a;s) and in the distribution of

chemical elements among the components (ajyj): vii

The nature of the change: §; Vv 6§, V §3 V &,

In a linear change no matter is added to the component and none

is removed from it, e.g. izomerization.

tVin = vy A8 (79)
Ayo[(uls)l] + V1 = Ayv[(uls)z] (80)

In chemical combination:

2Vi1 = Vi1 A 8 (81)
Ayo,l[(°15)1] [} Ayo,Z{(uls)z] + 2Vy) =
= Ayv[(uls)g] (82)

In chemical decomposition:

3Viy = vip A 83 (83)
Ayollars)yl + 3vyy =

= Ayv.l[(als)z] [¢] Ayv,2[(°ls)3] (84)
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In chemical exchange:

WVi1 = vi1 A Sy (85)
Ayo,l[(a1s)13 o Ayo,2[(315)2] + 4V =
= Ayv,l[(“15)3] o Ayv,z[(als)q] (86)

1) Change in the biological characteristics: v

where the distribution of compounds among the biological sys-
tems (ayp)s the density of the biological individual (a;j) and
the biological structure (a;s) are regarded as characteristic

figures.
The nature of the change may be: §; Vv 62 V §3.
Linear change is the change of the biological structure.
11z = viz A& (87)
Ayo[(ulg)l] + 1Vyo = Ayv[(ale)zl (88)
Combining change: growth of the biological individuals.
2Via = vi2 A 62 (89)
= Flxi0)
Ayo[(a12)1] + 2Vi2 Ayvxx«»2123 (90)

Resolving change: reproduction of the individuals, which brings
about an increase in the density of the individuals-

3Viz = V?z A 83 (91)

Ayo[(alg)l] + 3Vy2 = Ayv[(013)2] (92)

Death of the individual means a decrease in the number of the

individuals-
3VI% = V;% A 8, (93)
3 =a, 0 3 {9h)
Ayo[(als)ll + 3V12 = Ayv 342 \9
or:
-1 .
A [(016)1] + 3Vi2 = Ayv[(o,‘.“ {(95)

yo
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Equations (31) to (95) interpret elementary changes. A change

is called elementary if only one of the characteristics is changed,
even if such a change would lead to a fictive material system (e.g.
a material possessing a crystal structure, 'but, at the same time,
without any chemical structure). Consequently, a part of the ele-
mentary changes is impossible in itself alone. On the other hand,
elementary changes as defined in the foregoing permit all possible

real changes to be synthetized.
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PESHME

ABTOpL B QaHHOM COOOWEeHWH 38HWMAKTCR MaTepHanbHHMH CHCTEeMam:
TEXHHUYECHON XHMHH, H MIMEHEHWAMW MPOWCXOARWHMHM O HWUM, Janee wana-
rawT HMX TONHOBAHWME H MATEM3TH4YECHOE OMNWCaHue.

HavyecTeeHHOE ONWCAHME MaATEPHANLHBX CHCTEM ObN0 BHNONHEHO 0N~
pegeneHvemM

- HOMMNOHEHTOB, HaAxXOA4AUWWMXCA B CHUCTeme,

- B3aWMMHEIX CBA3ENM MEWMAYy HOMNOHEHTAaMH, H

-~ COCTORHMA CHCTEMb.

MarepHanNbHLE CHCTEMH HOAWYECTBEHHO ONPEABNAEBHH MATPHLHHM BH-~
pamenmem,

TEXHUHO-XHMHYBCHME HIAMEBHEHWA ObAW XapaKTEpH3IOBAHL BHAOM H
THNOM W3MBHBHMA, TaAHWM CNOCOGOM MOMHO GLO OTMETUTL Hantones
BaWHHE 3NEMEHTAPHLE HIMEHBHHA.
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Starting from the physical model, basic equations
are derived for the flow of the fluid, particle motion
and changes in particle density along the radius.These
equations enable the fluid-mechanical properties of
fluidized systems to be described.

The basic equations derived are applied to sys-
tems fluidized with e 1liquid, and equations are
presented for the calculation of the inter-granular
liquid flow rate, of the change in grain flow rate
along the radius and of the void fraction.

INTRODUCTION

Various theories have been described in literature for the
description of the fluid mechanical properties, such as expansion
and viscosity of the layer, and the motion of particles, etc., in
fluidized layers [1, 2, 3, 4%, 5, 6] etc. Based on these theories a
number of equations was derived;however, the practical application

of these is cumbersome and difficult.

In the following, based on a physical model, the derivation
of equations enabling the calculation of the most important fluid
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