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The thermodynamic conditions of the dehydrogena-
tion of tetrahydrothiophene were studied. Experiments
were carried out with various types of metal, metal
oxide and metal sulphide catalysts in order to increase
the rate of the equilibrium reaction,under standardized
conditions.

Experiments were carried out using a suitable
catalyst to determine the kinetics of the reaction.
According to the calculations, the rate-determining
partial process is the surface reaction.

Crude oils of high sulphur content contain various organic
Sulphur compounds in amounts comparable to that of the hydrocar-
bons. These sulphur compounds may be important raw materials in
the production of a.number of organic compounds. In the petroleum
refining industry, as a result of corrosion hazards, endeavours
are made to remove sulphur from the products. However, sulphur re-
Boval processes yield sulphur compounds which are inadequate for
furthep processing. Accordingly, any research dealing with the re-
fovery and further processing of organic sulphur compounds found

i1 crude oils is of considerable interest.

———
* .
Pét_Nltrogen Works
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The present work deals with the dehydrogenation of a monocy-
clic sulphide, tetrahydrothiophene, that is also found in crude
oils.

The tetrahydrothiophene plant built within the P&t Nitrogen
Works primarily serves the demand for gas-scenting agents. However
producticn on an industrial scale opens up the possibility for the
production of other materials based on tetrahydrothiophene. THese
include two very important products: sulpholane and thiophene.
Sulpholane is an important solvent that is used for the recovery
of aromatic hydrocarbons present in aromatized petrols. The method

is known as the Shell extraction technique.

Thiophene - which can also be produced by the dehydrogena-
tion of tetrahydrothiophene - is another important compound,
which 1is wused as a vraw material in the pharmaceutical, paint,
pesticide and plastics industries [1, 2, 3, 4].

Properties of Thiopherne and Tetrahydrothiophene

Physical_Properties

The molecular weight of tetrahydrothiopheﬂe is 88.174, while
that of thiophene is 84.142. There is no major difference between
their densities; the density of tetrahydrothicphene at 20°C is al-
most ejual to that of water, its value being 0.9998 g/cm?, whereas
the density of thiophene I1s 1.0648 g/cm3. Their boiling points at
atmospheric pressure show a rather large difference: tetrahydro-
thiophene boils at 121.12°C, while thiophene at 8u.16°C.

Chemical Properties

Tetrahydrothiophene was first discovered in Persian crude

oils.Its odour is poignant. It is miscible with a number of fluids

but not with water. It can be oxidized with potassium permanga-



1973_ Catalytic Dehydrogenation of Tetrahydrothiophene 117

nate; in this reaction sulphone (known commercially as sulpholane)
is produced which finds an application as a solvent. It provides
crystalline compounds with mercury halides. The latter reaction,
on account of the characteristic melting point, is used for iden-
tification.

' Its stability is higher than that of mercaptans and conse-
quently it can be used for gas scenting. Its sulphides are used to
improve the ignition characteristics of Diesel oil. Chlorinated

tetrahydrothiophene can be used as a pesticide.

In a similar manner to tetrahydrothiophene, thiophene is a
colourless liquid with a slight odour resembling of garlic. Al-
though'it is insoluble in water, it is readily soluble in alcohol
and ether. It is a reactive compound and its chemical properties
are in the main similar to those of benzene: it can be nitrated
with nitric acid and sulphonated with sulphuric acid. It forms or-
gahic metal compouﬁds with mercury salts, and tends to form com-
plex compounds with various metals. ’

Its vapours irritate the mucuous membranes. If inhaled for a
longer period of time, 1t causes spasms, and alsc has an adverse
effect on blood cell production. Accordingly it must be handled

with care.

Dehydrogenation of Tetrahydrothiophene

YURIEV and BORISOV [5] were _the first to produce thiophene
from tetrahydrothiophene by dehydrogenation on a platinum-alumina
and nickel sulphide-alumina catalyst.After a long interval, YURIEV
and TRONOVA [6] reported in another paper on the effect of chromi-

um oxide-alumina catalysts in the transformation of various het-

erocyclic compounds, including tetrahydrothiophene.
HIRAO and HATTA mentioned in their péper [7] that tetrahyd-
rothiophene can be dehydrogenated to thiophene in the presence of

a chromium oxide-alumina catalyst at 500°C.
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According to FRIEDMANN {81, tetrahydrofhophene is dehydro-
genated mostly to thiophene in the presence of elemental sulphur
at a pressure of 3 atm and within a period of 10 hours at 160°C
with the simultaneous production of a number of other organic sul-
phur compounds. ‘

OBOLENTSEV and associates [9] studied the dehydrogenation of
tetrahydrothiophene in the presence of various industrial cata-
lysts. These authors applied benzene as a dilutihg component in
the dehydrogenation. Their experiments were also supplemented by
equilibrium calculations. According to the latter, a temperature
of at least 450 to 500°C ‘is necessary for the dehydrogenation to
proceed. Decreasing the pressure or dilution with an indifferent
component favourably influences the reaction.

MASHKINA and associates [10] studied the dehydrogenating ac-
tion of the oxides and sulphides of metals of the third to sixth
column of the periodic system upon diethyl sulphide and tetrahyd-
rothiophene. Chromium oxide, copper chromite, cobalt molybdate and
platinum were found to be the most effective.

Thermodynamics of the Reaction

Dehydrogenation of tetrahydrothiophene to thiophene proceeds
" according to the following equation:

CH,

CHy CH —— CHH
t —

CH, CHy © CH H

\S/ \S}

The reaction heats were calculated on the basis of the Franklin-

+ 2 Hy

-increments [111. The calculated values are summarized in Table 1.
The change in free energy of formation for the reaction was calcu-
lated with the FRANKLIN’s method [11] as well as with that of van
KREVELEN [131.0n the basis of these, the lowest theoretical tempe-

rature, at which the reaction is possible, can be determined. The
calculated values are shown in Table 2.
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Table 1. Heats of Reaction of the Dehydrogenation of
Tetrahydrothiophene at Different Temperatures

Temperature AHO, Heat of Reaction
%k (kcal/mole)
300 32.910
koo 23.252
500 ) 33.540
600 33.752
800 ' 33.84k

Table 2. Changes in Free Energy of Formation

Temperature 3G° (reaction) [11] AG° (reaction) [13]

°x (kcal/mole) (kcal/mole)
300 11.17 11.1k
koo 4.08 3.87
500 -3.20 -3.L4k
600 -10.59 -10.70
800 -25.3k -25.56

The values calculated with the two different methods showed good
agreement. It can be concluded from the above data that the reac-
tion does not occur at 400°K, whereas it is possible at 500°K.
Thiophene can also be hydrogenated an account of the equilibrium
reaction. The degree of hydrogenation is;negligible at atmospheric
or lower pressures.

In the case of a reaction in the gaseous phase, the chemical
transformation involves an increase in volume, and accord;ngly the
decrease of pressure or the application of an indifferent diluting
component - on account of its partial pressure-decreasing action -

promote conversion.



120 Gy. Gérdos, L. Hodossy and T. Kun szabdd Vol. 1.

EXPERIMENTS

The aim of the experiments was to study the efficiency of
the various catalysts of the metal and ﬁetal—oxide-type, in order
to find the most preferable to be applied in more detailed studles.
The catalysts studied were different industrial products.

A tubular reactor of 11 mm I.D., made of stainless steel,
was used for these experiments. The temperature of the reactor was
maintained by an electrically heated mercury bath. Reactor temper-
ature could be adjusted by varying the pressure of nitrogen gas
conducted over the bath. 20 cm?® catalyst was placed into the reac-
tor for each experiment.The grain size of the catalyst was brought
to 1 to 2 mm by crushing and sieving. The raw material was for-
warded into the reactor or into the evaporator connected before
the reactor by means of a piston-type pump. The product was recov-
ered 1in a water-cooled condenser. Uncondensed gases and vapours
were collected in a gasometer. Samples were taken from both the

condensed product and the gaseous products and the samples were
analyzed.

The condensed products were analyzed with a chromatograph,

produced by Becker-Delft, type 2040 C-2, equipped with a flame-
-ionization detector.

The packing material used in the separating column was Celite
(C-22) wetted with 25 per cent poly(propylene glycol). The length
of the column was 1 m, the rate of the carrier gas stream 3 liters
per hour, the temperature was 120%c.

Tetrahydrothiophene produced by the P&t Nitrogen Works was
used. The product contained 2.5 per cent tetrahydrofurane as impur-
ity. The diluting material was analytical-grade benzene.

A mixture containing 2 moles of benzene and 1 mole of tetra-
hydrothiophene was used to compare the catalysts. Experiments were
carried out with each catalyst at three temperatures (450, 500 and
550°C) and at three different residence times (0.5, 1.0 and
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1.5 sec). The residence time was varied by controlling the pumping
rate of the feeding pump'and the volumetric rate was varied
accordingly. The experiments were carried out at atmospheric
pressure.

The effect of the catalysts at a benzene-tetrahydrothiophene

molar ratio of 2/1 and a residence time of 1 second is illustrated

with the conversion and yield data summarized in Table 3.

Table 3. Effect of Different Types of Catalysts

»

THT* conversion § Thiophene yield ¥

No. " Catalyst type ¥s50 500 550 450 500 550
°¢

1 Cobalt-molybdenum oxide 55.4 60.7 63.0 35.5 L0.8 48.3

2 Nickel-tungsten sulphide 15.7 16.9 18.%4 9.6 10.0 10.8

3 Platinum-alumina 11.0 27.2 4k.0 6.4 16.8 33.1

L Chromium-alumina 17.6 57.6 81.k 5.6 21.9 L0.9

5 Nickel-molybdenum oxide 8.7 10.7 18.7 1.3 3.3 10.1

6 Nickel-alumina 27.6 55.5 B8k.o 18.7 27.6 5hk.0

7 Copper chromite 11.1 17.5 k1.5 3.6 6.6 25.0

1. Ketjefine 12k4-1.5

2. Leuna-3076 .

3. Engelhardt product; 1.6 per cent Pt + Al;03 carrier

L, Leuna-6301

5. Leuna-8199/s

6. Leuna-652Uh . .

T. Product of P&t Nitrogen Works; copper(II)~chromium(III}-oxide

of the Adkins type

*General'ly used abbreviation for tetrahydrothiophene

It is apparent from the data shown in Table 2. that thiophe-~

ne was formed with all the catélysts used. However, in addition to
other decomposition reactions were
the fact that in every case the
I: addition

dehydrogenation to thiophene,
also occurring, and this explains
conversion of THT was higher than the thiophene yield.
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to hydrogen, hydrogen sulphide, ethane, propane and butane were
detected in- the product gases. In addition to the diluent benzene,
there was generally mainly tetrahydfothiophene and thiophene in
the liquid condensate. Traces of mercaptanes were also found. .

On the basis of experiments carried out at 550°C, catalysts
of the nickel-alumina, chromium~alumina and cobalt-molybdenum
oxide types were found to be most active.

The platinum-alumina catalyst deserves special attention be-
cause at a relatively moderate activity it shows a higher selec-
tivity, i.e. the difference between THT conversion and thiophene
yield was smaller than in the case of other catalysts.On the other
hand, the chromium-alumina - catalyst seems to be inadeguate for

further tests, because - despite the high degree of conversion -
its selectivity is poor.

On the basis of the experiments, nickel-alumina, platinum-
-alumina and cobalt-molybdenum-oxide catalysts were found to be
adequate for further detailed studies aimed at finding the param-
eters of industrial production.

KINETIC ANALYSIS OF THE REACTION

Nickel-alumina was chosen from among- the catalysts that were
found to be adequate and the kinetics of the reaction were studied
in the presence of this catalyst.

The aim of our’ studies was to obtain data on the relative
rates of the elemgntary processes, on the details of processes oc-
curring on the catalyst and to determine the most preferable
parameters in connection with the use of the catalyst.

The experiments were carried out at 550°C and at a molar ra-
tio 10 moles benzene/mole tetrahydrothiophene at different feed-
ing rates. Accordingly, different residence times were obtained
for the reactants. The calculations were carried out on the basis

of the  analytical results obtained for the starting materials and
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products. The results of these 'experiments are given in Table 4.
During the calculations, - a procedure proposed by NAGY [12] was
adopted. This can be summarized as follows: the rate and kinetic
equations conforming to the supposed mechanism, bertaining to the
‘stoichiometric equation, were taken from a Table. The partial
pressure values were substituted into these equations, and by

adopting the sign

the equations were linearized.

The rate values found in the equations can be calculated from

the measured data.

Table 4. Dehydrogenation of Tetrahydrothiophene at Various
Feeding Rates

Amount of catalysg: 20 g
Temperature: 550°C
Pressure: 68 mm Hg

No. of experiments

Measured data

L 2- 3.  b. 5. 6.
Feeding rate B'. 102 1.815 1.957 2.50 3.15 L4.78 6.25
(cm3/sec)
THT concentration in the n N N 9.1 o1
vapour mixture feed (vol.%) 9.1 9 9 9
THT concentration in _ 0.66 0.97 185 +3.4k 6.3 6.6
product vapour (vol.%) .
Thiophene concentration 8.3 8.0 7.2 5.6 - 0.5

in product vapour (vol.%)

which are in agreement
it will be true that

If the transformed experimental data,
with the equations, are plotted in a diagram,
from among the rate (kinetic) equations the correct one is that



12k Gy. Gédrdos, L. Hodossy and T. Kun Szabd Vol. 1.

which yields corresponding pairs of values which lie on a straight
line.

The stoichiometric equation of the dehydrogenation of tetra-.
hydrothiophene is the following:

CyHgS — CyHWS + 2 Hp
and the type of the equation is
A — By + B, RN ¢ |

The amount of tetrahydrothiophene brought to evaporation en-
sures a stream of constant mass rate in the reactor. The amounts
of liquid and gaseous products leaving the redctor were measured,
together with the composition of the liquid.. The diluting compo-
nent did not take part in the reaction and in order to simplify
the calculations it was not taken into account. Compression of the
gases after the reactor was given by the difference of the exter-
nal pressure and the partial pressure of the diluting component),
which was 68.0 mm Hg. Taking the stoichiometric Equation (1) into

consideration, the rate equatiorn of the reaction is the following:

(yA)t (yg,) (v )
1 t Ba t d
1. j / 21 / B2 (2
a'o ¥, )0 ¥B,’0

The factor 1/2 in the third expression of the rate equation orig-

inates from the stoichiometric constant.

The density of the raw material fed into the system was
0.889 g/cm?. From the data given in Table 4., with the mass rate
of feed (B), if the mass of the catalyst (m ) is known, the vol-
umetric rate {S) can be calculated.

B = B . d; S:—i; (3)
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Tetrahydrothiophene was fed into the reactor, and thus:

N - 0-
(yA)O = —M— 3 (yBl)O = 03 (sz)O

Taking the equation of the reaction into consideration, for

material balance the following holds:

I

B 1
(y)g = (¥p)y = (yBl)t b (sz)+

The results of the calculations are summarized in Table 5.

Table 5. Values Calculated from the Experimental Data

125

(%)

the

No. of experiments

Calculated values

3. . 5.

[
n

B . 102 (g/sec)

1.615 1.7ho 2.220 2.800 L4.250 5.560

S » 103 (g/g sec) 5.807 0.870 1.110 1.k00 2.125 2.780
(y,)" 10% (moles/g) 1.135 1.135 1.135 1.135 1.135 1.135
(yA)t- 102 (moles/g) 0.078 0.116 0.222 0.415 0.700 1.060

ju

1/ » 1073 (g sec/g)

_oLhg 1.150 0.900 0.715 0.h470 0.360

It was not possible unequivocally t
of the experimental series, which of t

ences the reaction rate in addition to the starting material.

Consequently, of the rate equations pertaining to
tion A -—— By + Bp found in literature all those had to be
in which the reaction rate is dependent o
the starting material and of a product (
the partial

tions 6f and 6g).

o determine, on the basis

he product components influ-

+he reac-

studied
n the partial pressure of
Equations ba to ge), or on

pressure of all the three possible components {Equa-
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1. W= f(p,, PBl) 2.- W= f(p,, sz)
P . . P
W= A ; W= A (6a)
©oal s prA +‘prB1 Cal « prA + o:inB2
P, P
W= A 5 ' W= A (6b)
aII + CII ‘/p_Bl_ aII + dII\/p—BZ—
p P
W= A 3 W = A
2
(aIII + bIIIPA + IIIPBI)Z (aIII + bIIIpA + dIIIsz)
(6c)
W= A ;W= A (6d)
(aIV 4 bvaA s oIV JI—)B_I)Z ‘ (alV 4 vapA . dIV@)Z
P ' p
W = —_._A___ 5 W = A (6e)
av + CVPB1 aV + dva2
3. W= ‘f(pA, pBI, sz)
P .
W = A . (Sf)
vl VI VI
a + ¢ PB; + d Py
P
- A
W VII VI VII 2 (5e)
I VI
(a + b P, + Py, *+d sz)
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The partial pressures can be substituted by the mole frac-

tions in the gaseous phase:

__& . (v _ ‘  (ray
P 3(y,)y = 2(yp)y

P P '

) N R 3} (7b)
P 3 P v
Pp, L2y - Pa - (7¢)

" v

By dividing Equations (6) by the total pressure (P), substi=-

tuting the values given in Equation (7) and ntroducing

o =7
1
X

we have linearized rate Equation (6):

I
o34 2gT)e - 2alix
W P 3 3 S
;s Xz aols 8lx (8a)
W
I
xoo@a 1oy pf - 2 ehix
w P 3 3
II II
5:9._+F d_ T==
W 3 JP ,
S I A B (8D)
w X
II1 II
x_a_ 11 el %
W P 3 JF
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V’Z =J§l:(aIn v 2 QITT) (p11T 2 dIII)ﬂ
W P

3 {Z.= o1 + g 111y (8c)
1

I11
X .2 + 1 cIII)+(bIII 1 cIII)x
3 3
w P
IV . IV
qz =JP (2Z— + vax + % a JT-%)
W P P
; ¢3.= otV 4 Bva + YIV [T-x (84)
W
IV
£ = JF (2 + bV V% S A=)
1% P JP
v
§=a—-—+-§-dv (1 < x)
1% P
H L YV (1 - x) (8e)
v 1%
X a 1 v
- e ¢ [ed (1 - X)
W P 3
VI
X a 1 VI 2 VI 1 Vi 2 VI VI VI
-—(———*P—-C_ + = d - {= ¢ - °§: -
" > 3 3 ) (3 +3d77)x . a Y (8f)
VIiI
F: ﬁ r(a . % CVII 2 dVII) + (bVII 1 VII 2 dVII)x ;
w L. P -
VZ: SVIT 4 gVII, (8g)
w

The specific reaction rate (w) can be calculated from the follow~
ing Equation:

cz(y‘,‘)t o A(yA)t
d(1/s) at1/s)

W= -

(9)
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If (y,), 4is plotted against 1/S on the basis of Table § (Fig.1).

;
£
LD
=

L od
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<

n

Neu”

06

05 -

04

03+ N

(12-
014 o .1\“
T T T T T T
22 a4 05 08 W 12 W
V50 (gsecsy)

Fxg.l The alteration of THT concentratiom with the reaction time.
] measured values; x values used in the differentiation.

The difference quotients wera calculated by taking the A(1/S) val-
ues and the corresponding ‘(YA)t values from Fig. 1. The result of
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the calculations is. shown in Table 6. Fig.2. was plotted on the

basis of Table 6; The Tigure shows :he difference quotients
a

- which, according to Equation (%), correspond to the specific re~

-action rates - plotted against (yA)t'

Table 6.  Values of the Difference Guotients as Calculated from
Measured Results

.3 C.4% 2.5 ©.6 0.7 0.8 0.9 1.0 1.1
fg) 1.15 0.86 2.865 0.L4s ©.38 2.23 ¢.22 0.17 0.12
. 107 - 2.2 2.1 1.6 1.1 £.9 0.7 0.5 0.b

E% 3.0
£ ‘T/
S 26 : /
z
22 /27
18 /‘ﬂI
14 / !
" A
06 s I
i
027}
T T T T T T T T
03 02 03 04 05 06 07 08
(gA)t ° 102 (mo‘es/g)
Fig. 2. Tue alteraticon icn rate with
concentraticn. X the values
Turve
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Knowing the specific reaction rate (w) and the mass of the
catalyst, the rate of the dehydrogenation reaction can be written

as follows:

N = W e m (10)

' The w values, corresponding to increasing (yA)t values and
necessary for calculation of the linearized rate Equations {8a to
8g), were read from Fig.2. The detailed calculation is ~shown in

Table 7. The linearized rate equations constructed in this manner

are shown in Figs. (3a to 3e).

[- ]
]

~
i

102 (sec/mole)

X
W
-3
1

wn
1

4 i 1 i i 1 T 1 1 1 ¥ T

4 8 n 16 20 2% y::] 32 3% &0 b4
x-102

Fig. 3a. The linearized cate equation, based on Equation (8a).

It is apparent from these Figures that the calculated values

appear along a straight 1line only in the case of Figs (3a) and

(3e).

From these two the

£ Ix

Fig. (3a) as the one

equation was accepted which corresponds to
straight line con-

best fitting the conditions. (The slope of the

Structed in Fig. (3e) is negative.)
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B 107 (sec/mole)

& T T T T
6 7 8 9 » V1.0

Fig. 3b. The linearized rate equation, based on Equation (8b).

T T T T T T T 1 T
4 8 )74 L] 2 % 28 2 k] &0 bhy
x-0
Fig. 3c. The linearized rate equation, based on Equation (8c).
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B
2
2
£
7
]
Z
xl} =114
|
!
2
0
g—
8 T T T T
6 7 8 9 v Vix-10

Fig. 3d. The linearized rate equation, based on Equation (84).

-9
3 i
>
3
~ §4
o
(=3
x|}
7
(=
5 T 13 Y ¥ T ¥
5 5 7 8 9 10 (1-x).10

Fig. 3e. The linearized rate equation, based on Equation (8e).
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The values of constants a and 8 can be determined on the ba~

sis of Fig. (3a):
ol = 5.05 . 102 (sec/mole)

‘BI = 7.5 =« 102 (sec/mole)

A detailed explanation of the meaning of the constants is given in

the following:

1 1
ol = 8L, 241 e =21, 1T
P P

1_.,I_2.1 I, I _ 1.1
B~ = b 5 d B8° = b zc
al 2 1 - 2 .1 . .I
— + 3 d® >03; 5d° <b” #0

P 3

a_ 1 cI > 0 1 cI < bI 4 0--

P 3 3 :

According to the tables published in literature [11], the surface
reaction is the rate-determining partial process in the case ‘of
this type of reaction. One of the products formed is adsorbed;con-

sequently both cases of Equation (8a) were studied:

Py
b c
TPy *tzPg)

P
W = A :l
a + pr + chI a

(1 +

The corresponding kinetic-equation is:

Py

W=k
T+ Kypy * Ky Py,

By comparison of the two equations:
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S - b = &
k=93 Ky=33 K '=3 0°F
K X
B

When the constants a and B are expressed with rate and equilibrium
constants:

=

a1 1 K, 1 11
asptrtyccxpt3 g (p*3K,)
K K
R I SR B TR 9
B=b-gc=q--gobsyg (K-5k)
If Ky ™ O:
A I
Rl 73 -] T a P
K
- A - -8 .1
B = K =Bk=3 5
In this case:
K = L = 2.92 - 10~° moles/mm Hg sec

5.05 « 102 . 68

H

K, = 7.5 + 102 + 2.92 - 107% = 2.19 - 1072 1/mm Hg
If KBl # 0, the values of k, KA and KB1 cannot be calculated
separately.

If component B, (hydrogen) is adsorbed, the rate equation is
the following:
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The corresponding kinetic equation is:

PA

1+ K,p KBsz’

In a similar manner to the foregoing:

K
1 . a _ K,
'a-E b-T d-k
further
_a 2 11 2
@ =353 a-=x (3 + KBz
2 1 2
g =b-=4d4d=— - =
3 k 3 KBz)
If KB 0, the values of k and K are 1dent1cal to those calcula-

2
ted in the foregoing; the values of the physical constants cannot
be calculated in the opposite case.

Accordingly, on the basis of the kinetic studies it can be
Concluded that the dehydrogenation proceeds through the follow1ng
stages:

1. Adsorption on the catalyst.

2. Chemical reaction on the surface.

3. Desorption.

An analysis of the kinetic equation obtained leads to the follow-

ing conclusions-

1. The global reaction rate is, through the rate constant,

propotional to the surface of the catalyst (k = F(S )k K ). Ac~
cordingly it is preferable to use a dehydrogenating catalyst of as

high a specific surface as possible.
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2. At low tetrahydrothiophene partial pressures the kinetic
equation bécomes simpler (the value of KApA may be neglected) and
the reaction rate is proportional to the partial pressure of tetra-
hydrothiophene: ‘

W = k - Py

Industrial realization of this condition is uneconomic.

3. Side reactions are negligible at lower temperatures. At
the same time, desorption of the products may be accelerated by
elevation of the temperature. ’

The experimental results make it possible to determine the
data necessary for reactor design in further experiments carried
out on a pilot plant scale.

LIST OF SYMBOLS

Ai starting components of the reaction
Bi components of the reaction product
B mass rate of gas stream (g/sec)

density (g/cm3) .

d
Ky Ky adsorption equilibrium constants of the components

* * (1/mm Hg)
‘M molecular weight
mg mass of catalyst (g)

P, » Py partial pressures of the components (mm Hg)
i

P gas area pressure (mm Hg)

S volumetric rate of gas stream (g/g sec)
t time of reaction {sec)

v catalyst volume (cm3)

specific reaction rate (moles/g sec)
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W reaction rate {(moles/sec)
x conversion (dimensionless)

Ya.> g concentration of components (moles/g)
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PE31ME

. AsTOpaMk OLAW WAy4BHH TEPMOAHHAMHYBCHKHE YCNOBWA Aerunpore-
HW3auWUM TeTparwapoTHodeda. [lpn CTaHAapTHHX YCAOBWUAX pBaKUHK Ouinmi
BLMNONHEHW ORHTH C FIDUMBHEHWEM HKaTalM3aTOPOE W3 METanna, OHWCH me-
Tanna MM cynbduaa METanAa pasHYHOro THMa, NPOW3IBEABHHEX W B Npo-
MELNGHHOM MAcWTA08, C WEALI NOBLWEHWA CHOPOCTH PABHOEBCHOW PEAHUHM.

an HCNONb30BaHHUH COOTBETCTBBHHO 8H6p3HHOF0 Hatanuaartopa
NPoOBOAHAHCE H3MBPBHHA ANR onpeae neHnA HHUHEBTHUKNK peanunHU.,. CornacHo

pacHeTam asTopoB, 4YACTHHM npoyeccom onpensnrcnM CHOPOCTHL ABNARBTCA
NOBEPXHOCTHAaA pPBAHUHUA. ’
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