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In a laboratory tubular reactor at atmosgheric
Pressure and in a temperature range of 580-830°C the
Pyrolysis of a straight-run Romashkino naphtha cut
with a boiling range of 40-160°C was investigated.

New chareacteristics were introduced to charac-
terize the degree of the decomposition of the
naphthas. Substituting the conversion in kinetic
equations developed for flow reactors by the decom-
position grade, appropriate correlations were derived
for describing the overall decompositicn rate of the
naphthas.

It was demonstrated that in the temperature agd
residence time ranges of industrial pyrolysis
pProcesses, the expansion and the yield distribution
of the main reaction products depend only on the
decomposition grade.

For predicting the product' S
naphtha pyrolysis a simplified kinetic
elaborated.

distritution in
model was

INTRODUCTION

annual world production of ethylene of

Roughly half the
pyrslysis  of gaseous

fearly 20 million tons is produced by the
hYdrocarbons, the other half is produced by the pyrclysis of

liquid petroleum fractions, mainly of naphthas {11].
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Despite the large and rapidly increasing production capac-
ities for the pyrolysis of hydrocarbons, relatively few and often
contradictory data were published in literature regarding the de-
scription of the pyrolysis process, reaction kinetics and product
distribution. Most publications deal with the investigation of
gaseous hydrocarbons. Very limited detailed and reliable data are
available concerning the description of the pyrolysis of liquid

hydrocarbon mixtures and naphthas.

"To characterize the degree of decomposition in the pyrolysis
of naphthas the "severity function"™ introduced by LINDEN et al.
was generally used in the past [2, 3]. Recently, ZDONIK and his
associates introduced the "kinetic severity function" based on the
conversion on n-pentane under the given pyrolysis conditions and
the Jfkdt values calculated by a first-order kinetic equation are

used to define the degree of decomposition for naphthas.

On the basis of the previous investigations, the sum of the
conversions of the feed components weighed by their mole fractions
on the one hand, and the relative expansion on the other hand were
introduced for characterizing -he decomposition grade for hydro-
carbon mixtures, and methods were elaborated for the calculation
of the overall decomposition rate and the description of product

vield curves, respectively [5, 7].

In this publication the applicatior of the above mentioned
methods will be described for the evaluation of the pyrolysis of a
straight-run Romashkino naphtha cut carried out in a laboratory
tubular reactor at atmospheric pressure and in a temperature range
of 580-830°C. The specification of the naphtha investigated was as
follows:

Density (g/cm3) 0.7077
Boiling range (°C) 40-160
Molecular weight (average) 111

n-Paraffins (wt;%) 38.7
iso-Paraffins (wt.$%) 37.9
Cycloparaffins (wt.$%) 17.3

Aromatics (wt.%) 6.0
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DECOMPOSITION GRADE FOR NAPHTHA

Between expansion and decomposition grade the correlation

can be given by Equation (1) [5-71]:
E = 1+ (E, - 1)X (1)
where E expansion,
k
z Yy Vyi limiting value of expansion,
i

v,. = overall stoichiometric coefficients of the reaction

products,
k
X =X Y4y decomposition grade.
J

As regards its form and physical meaning Equation (1) is the
same as the correlation between expansion and conversion for the

pyrolysis of individual hydrocarbons [8, 91. The only difference

is that in the case of the pyrolysis of hydrocarbon mixtures,

instead of the conversion and the stoichiometric coefficients, the

sum of the conversions of the feed components weighed by their

mole fractions will be introduced.

In the case where the conversions cannot be determined with

precision because of the large number of comporents or
in pos-

sufficient

analytical difficulties (mainly for petroleum fractions},
session of the expansion (E) and limiting expansion (E ) values
and rearranging Equation (1) the decomposition grade can be esti-

mated by the "relative expansion", given in Equation {(2) [5, 61.

\

E -1 {2)

The detailed gas chromatographic analysis of the products

made it possible to determine the conversions of the componernts

and the decomposition grade of the naphtha investigated was defi-

ned by the sum of the conversions of the feed components weighed

by their mole fractions.
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Expansion as a function of the fictive react1on tlme and
the dgcomposltlon grade. o 581%c; a 624°%¢; x 660°¢; o 699°C;
737°%; + 773%; = 834°C.
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In Fig. 1 the expansion is plotted as a function of the fic-

tive reaction time and the decomposition grade, respectively. The
naphtha feed contained 6 wt.$% aromatics that practically do not
decompose under the given conditions. For this reason the decompo-
‘'sition grade varies only up to the 0.94 value, which is marked by
a dotted line in Fig. 1 and in the forthcoming figures. From the
top figure in Fig. 1 the limiting expansion value was estimated to
be 3.62. As can be seen from the bottom figure, the variation of
expansion as a function of the decomposition grade can be approxi-

mated by a single curve independently of the temperature.

DESCRIPTION OF THE OVERALL DECOMPOSITION RATE

A description of the overall decomposition rate for the

individual components of the feed naphtha, as well as for the

naphtha cut investigated, was carried out by using the kinetic

equations for the individual hydrocarbons. Substituting the con-

version in these equations by the conversions of the hydrocarbons

composing the naphtha (xJ) and by the decomposition grade {(X)

characteristic for the given naphtha, respectively, the overall

the individual feed components and the
can be calculated. This method was

decomposition rate for
naphtha cut, wrespectively,
previously applied for the description of the pyrolysis of binary,

ternary and six-component hydrocarbon mixtures [5-71.

As examples‘in Fig. 2 the conversion of 2,4-dimethylpentane,

and in Figs. 3 and 4 the decomposition grades of the naphtha cut

are shown as a function of the true and fictive reaction time. The

r the individual hydrocarbon are similar in

conversion curves fo
i.e. by increasing ‘the

shape to the curves for the naphtha cut
temperature the rises of the curves - which are proporticnal to

the decomposition rate - steeply increase.

To describe the overall decomposition rate 1.e. the conver-

. A3 -
sion curves shown in the figures, an integral as well as a differ

ential method were applied [8, 21-
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Fig. 2. Conversion of 2,h—dimethylpentane as a function of the true

reaction time in naphtha pyrolysis. — Calculated by Eq.(5)
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Fig. 3. Decomposition grade vs. true reaction time. — Calculated
by Eg. (5).
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Fig.4. Decomposition grade vs. fictive reaction time.
® Calculated by Eg. (4). o Calculated by Eg. (7).

Integral Method

In the first step cf the evaluation, <he decomposit.con rate
constants were calculated for the measured

first-order reaction kinetic eguations valid

The calculated k values were D
-dimethylpentane and against the
ha cut in Figs. 5 and 6, respectively. The I:
accordance with the results cbtain

of individual hydrocarbons and model mi
rate constants calculated h
decrease with increasing cocnversion and

Zecrease depends on the temperature. The value

and 6 measured at a given temperature can be ap
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Fig. 5. Decomp031t10n rate constants" for 2 h-dlmethylpentane vs.
conversion. e 581°Cc; A 62L°%; x 660° C, o 699°C.
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Fig. 6. Decomposztlon rate .constants for naphtha vs. decomposition
grade. o 581°C; a 62L°%¢; x 660° c; o 699°C.
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following linear relationship:
k = k% - gX (3)

o c L. .
where k decomposition rate constant at zero conversion,

B restraining coefficient.

The (k°) and (8) constants can be determined from TFigs. 5
and 6.

Figs. 7 and 8 show the decomposition rate constants and
restraining coefficients plotted against the temperature for 2,u-
-dimethylpentane and naphtha. It can be seen that the temperature

dependence of both constants can be described by Arrhenius-type
equations.

Substituting Equation (3) into the integrated rate equations
for first-order reactions the following correlations were obtained

between the overall decomposition rate and the fictive and true
reaction time [5-97:

- (E, - 1) X] ()

)t
(8]
i
i
—
w
—

To check Equaticns (4} and (5), conversions for 2,4-dimethyl-
pentane as well as decompositi

on grades for the naphtha were calcu-
lated as a function of the fictive and the true reaction times for
the measured temperatures.For this calculation, first the k° and B
values were calculated for the en temperatures using the Arrhe-
nius-plets in  Figs. 7 and 2 utting these values into Equations
(4) and (5), the fictive and True reaction times were calculated
for different conversions and decomposition grades, respectively.
The full lires in Figs.2, 3 and & represent the calculated curves.
The satisfactory agreement between +he caiculated and measured
values confirms that the =laborated method is suitable for the

description of the coverall desccemposition rate of naphrhas.
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Differential Method

In this method the kinetic equation was used in the linear-

ized form given below [8, 9]:
log (dX/dw) = log (k/CO) +nlog C (6)

-where CO and C are~concentration of the feed components
(moles/litre) at the reactor inlet and outlet.

Fig. 9. 1o0g (%%) = log (%-) + n log C correlation for naphta .
o.
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For determining the constants of Equation (6) the curves of
the decomposition grade vs. the fictive reaction time (Fig.4) were
graphically differentiated and the momentary rates were plotted in
logarithmic scale against the actual concentration. This relation-
ship is shown in Fig. 9 for the naphtha investigated. .

On the basis of the above figure the k and n values were
determined and substituting theése values into Equation (7) the
decompdsition grade values were calculated at different reaction
times and temperatures:

X N
/’ LH)m (7)
cr .
o .
The integration in Equation (7) was performed graphically.
The calculated values were plotted in Fig. 4. These data square
well with the curves plotted through the measured values which

proves the suitability of the method for the description of the
- overall decomposition rate of naphthas. )

DISCUSSION AND INTERPRETATION OF PRODUCT DISTRIBUTION

In Figs. 10-18 the yields of the main reaction products in
wt.$ are plotted against the decomposition grade of the naphtha cut.
It is apparent from the figures that by increasing decomposition
there is a considerable change in product distribution. The yields
of some productsﬂwill?also be influenced to some extent by the
temperature.

The yields of hydrogen and methane continuously increase with
the increase of the decomposition grade (Figs.10 and 11). The yield
curves run above the tangents constructed to the initial part of
the curves, which indicates +that the amounts of these products
related to the naphtha consumed (the stoichiometric coefficients)
increase in the entire decomposition range. These products are
stable'under pyrolysis conditions. By increasing the temperature at
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a given decomposition, the hydrogen yield increases, and the
methane yield slightly decreases.

In Fig. 12 the ethylene yields are plotted against the
decomposition grade.

£
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Ethylene yield
%vt ’
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Fig. 12. Ethylene yield vs. decomposition grade. e 581°; A 624°c;
x 660°C; o 699°c; w 737.C; + 773°C; w806°C; = 834°c.

The curves run above the initial tangent i.e. the relative

amount of the ethylene considerably increases with increasing
decomposition.

Performing the pyrolysis atr a higher temperature up to a given
decomposition grade, the ethylene yield will increase. It can be
observed that the yield curves tend to level out, which indicates

that they probably pass through a maximum,at very severe conditions.
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The yield curve constructed through the points measured at 806°¢C
shows a definite maximum at about 1 second residence time.Perform-
ing the pyrolysis above 800°Cc with very short (0.1-0.4 second)
residence +time about 33-34 wt.% ethylene yield related to the

naphtha feed can be obtained.

The propylene yield increases with an increased decomposi-

tion grade up to a value of about 0.7 (Fig. 13). The yield curve

'
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Fig. 13. Propylene yield vs. decompositiol grade. ¢ 5817C; 4 247Cy
. 660°C; o 699°C; m 737°C; + 773°C; Vv806To; x BILTC.

runs above the initial tangent, has a maximum at about the 0.7-0.75

grade and over this the goropylene yieid sharply
Under the

decomposition
. . . . Y
decreases. The maximum propylene yield 1s about 16 wt.?%.

conditions investigated, the propylene yield curve is indeperdent

of the temperature.
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Depending on the reaction conditions about 2-10 wt.% ethane
is also produced in the pyrolysis process.It can be seen in Fig.1lu
that the ethane yield increases up to about the 0.85 decomposition
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Fig. 1k, Ethane yield vg. decompgsition grade. oo Sgloc; A 6gh°c;
x 660 °C; o 699°C; ® 7377°C; + 773°C; w806°c; = 834°¢.

grade. At a higher decomposition -grade, the yield curves measured
above 800°C show a maximum. By increasing the temperature, the
ethane yield at a givéh decomposition grade decreases. The propane
yield curves are similar in shape to the ethane curves.The propane

yield is one order of magnitude smaller . tian the ethane yield.
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Fig. 15 shows the butylene yields against the decomposi-

tion grade. Through the measured values a single curve can be

=
L]
L g l
o
&
£3 |
2
m
6_
4 - A
A
2—
. |
»*.
£
0 T T T T T
a0 02 0 05 a8 10

o

Fig. 15, Butene yield vg. decompgosition grade. o 5§;°C~ A ég
x 660°C; o 699°C; w 737°%¢C; + 772°c; ¥ g06°: 3

constructed, which means that under the

butylene yield is independent of the t

: : The

: 5 33 crad ximum buty-
shows a-maximum at about 0.5 decompcsition grade. The maximum buty

lene yield is about 7 wt.%. The yieid curve runs belcw the tangent
constructed to the initial part of the curve, that is the re
amount cf the butylene produced decreases with the incr
composition grade. The butadiene yield is considerably
by the pyrolysis temperature (Fig. 16). At 2 given d

grade, a much higher butadiene ield car Se obtained at higher
temperatures. The yield curves show a definite maximum at about
the 0.6-0.8 decompositien grade. By increasing <the temperavure,

the maximum shifts in the directicn of the higher decomposition
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grades. The maximum butadiene +vield is about &.5-5.0 wt.%. The
shape of the yield zurves (the low wvalue of the initial tangent)
indizcates that the ©butadiene is mainly formed in secondary reac-

tions.

In naphtha pyrolysis small amounts of pentenes (Fig. 17) and
pentadienes are also formed. The yield curve for pentenes shows a
maximum at about the (.8 Jdecomposition gracde. The maximum pentenes

yisld is about 1.¢-2.7 wt.%. The yield curves of pentenes as well

as of pentadienes are independent of the temperature.
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the yields of benzene, toluene and styrene are

plotted against the decompcsition grade. The benzerne yielid shows a
se up tc about the 0.5 decomposition grade i.e.

very small increa

dractically equal

Jver the about O.

tiderably and over

with the benzene

centent of the naphtha feed

6 decomposition grade the yield curves rise con-

the C.§ decomposition grade they rise abruptly.

The toluene yield, compared T0

“aphtha feed, slightly decreases up I¢

frade then centinuously increases above

SSmposition grade,

Sing temperature.

.the yields of botn

+he toluene con*tent 5% the
about the 0.5 ceccmposition
+his value. At a given de-

roducts desrease ty Increa-
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The yield curve of styrene . is independent of the temperature.
The styrene. curve is similar in shape to the benzene curve, above
the about 0.8 decomposition grade it steeply rises. The amount of
styrene formed is about one order, of magnitude smaller than the

"amount of benzene.

The above mentioned changes in product distribution are
caused by the simultaneous effects of several factors. These
‘changes can to some extent be explained on the basis of the free-

-radical chain mechanisms.

At a given decomposition grade, the increase in the hydrogen
and ethylene yields and the simultaneous decrease in the ethane
yield by increasing the temperature are caused by the change of
the relative velocities in the hydrogen abstraction and decomposi-
tion reactions of the ethyl radicals. By increasing the tempera-
ture the velocity of the ethyl radical decomposition- will consid-
erably increase compared to the velocity of the hydrogen abstrac-
tion, because of the much higher temperafure coefficient of the
decomposition reaction, which results in an increase of the hydro-
gen and ethylene yields and an equivalent decrease of the ethane

yvield.

The decrease in the propane yield by increasing temperature

can be explained in a similar way by the different temperature

coefficients of the hydrogen abstraction and decomposition reac-
tions of the propyl radicals.,

The considerable changes in product distribution by

increasing the decomposition grade in naphtha pyrolysis are caused

by the secondary reactions among the product olefins and the

chain-propagating radicals. From among these reactions  the most

important are the combination reactions of higher olefins and
dical decomposition following

chain-propagating radicals and the ra
these reactions. )

(Olefin); + R, === Alkyl radical — (Olefin), + Ry (8)
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As a result of the above mentioned decomposition of higher
primary olefins (pentenes, butenes) 1lower olefins (ethylene,
propylene) and methane are formed. The rise in the methane as well
as in the ethylene and propylene yields and the decrease of the
‘amounts of higher olefins can be explained mainly on the basis of

the above reactions.

In the case of higher decomposition grades the hydrogen ab-
straction reactions among the olefins and chain-propagating radi-
cals also have a considerable effect on product distribution. 1In
these reactions small molecules (H, CHy) as well as vinyl-, allyl-
and higher molecular weight unsaturated radicals are formed. The
reactions of these radicals among themselves and with the olefins
lead to the formation of higher molecular weight dienes and aro-
matics. As it 1is apparent in Fig. 18 the amounts of aromatics
steeply increase with the decomposition grade above the about 0.6
value.

SIMPLIFIED KINETIC MODEL FOR THE CALCULATION OF PRODUCT YIELDS

In the preceding sections the method for the description of
the overall decomposition rate for naphthas was outlined and the
constants of the kinetic equations for the naphtha investigated
were determined. In these kinetic correlations the decomposition
grade introduced instead of the conversion is the dependent
variable.

On the basis of the pyrolysis of individual hydrocarbons [8,
9] it was earlier demonstrated that the expansion and yield curves
plotted against the conversion were independent of the temperature
for most of the hydrocarbons investigated in the temperature and
residence time ranges of industrial processes. This means that the
gfpansion and yield curves car be described by mathematical funec-
tions containing the conversion as the independent variable.(In
most cases this description can be made satisfactory by a poly-
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nomial.) In such cases when the temperature independence is not
fulfilled, the above curves can be described by functions

containing the temperature as a parameter.

It was shown that among the principal reaction products the
yield curves of propylene, butenes, pentenes, pentadienes and
styrene are independent of the temperature. In the Figdres_ all
the measured values were presented. A considerable part of these
values were obtained above 1 second residence time. Taking into
account only the values measured in the residence time range
0 < 1t <1 second of industrial interest, the independence from
temperature is also valid approximately for <the yield curves

of the other products.

To 1llustrate +the above statement, the yield curves of

ethylene are shown in Fig. 19 measured in the 0 < t < 1 residence

40
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Fig. 19, Ethylene yield vs. decomposité
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time range. The small discrepancies at higher decomposition grades
do not cause difficulties in describing the yield curves.

The simplified kinetic model developed for the calculation
of the product distribution consists of the kinetic equations
suitable for the description of the overall decomposition rate i.e.
the changes of the decomposition grade, and of the mathematical
equations describing the yield curves as a function of the decom-
position grade.

>
"

f (T, w, O 1)

(9)

Hy

¥(X) .

Fig. 19 also presents some values calculated on the basis of
the above model. 1In this calculations first the decomposition
grades were determined for the temperatures investigated using
the kinetic constants presented in Fig. 8 and the kinetic Equation
(5). The decomposition grade values so obtained were put into the
polynomials describing the yield curves and the product yields

were determined for the given reaction conditions.

The yields calculated by" the above method fit in well with
the full line constructed through the measured values which indi-
cates the suitability of the given method for the deséription of
the thermal decomposition of naphthas.
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USED SYMBOLS

C total concentration of the naphtha components (undergoing

o’
decomposition) at the reactor inlet and outlet, resp.
(moles/litre)

E expansion, defined by the ratio of mole numbers of the
mixture leaving and entering the reactor (dimensionless)

E, limiting expansion value (expansion valué for the complete
decomposition of 1 mole feed mixture)(dimensionless)

H, yield of the ith reaction product (mole product/mole feed
or kg product/kg feed)

k decomposition rate constant (sec-l)

k° decomposition rate constant at zero conversion (sec-l)

Jkdt severity function (dimensionless)

n reaction order

Ry, R{ chain-propagating radicals

Vji overall stoichiometric coefficient of the ith reaction
product in the case of the complete decomposition of
the jth component of the feed mixture as individual
hydrocarbon (moles product/mole decomposed)

X conversion of the jth component in the feed mixture
(dimensionless)

X decomposition grade (dimensionless)

s mole fraction of component j in the feed mixture
(dimensionless)

8 restraining coefficient giving the inhibiting effect of
the reaction products (sec-l)

T true reaction time (sec)

w fictive reaction time (sec)
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PE3OME

BeH3MHOBAA PpPAHUMA .C MPEASNaMH TOYHW HHIMNEHWA 40-160°¢C pomaw-
HHUHCHOM HBOTHM Bwna nogseprHyTa NUMPoONWM3y B nadopaTopHoOM prcaaTOM
peaKkTope, Npw gasneHuu 1 atm v 8 guanalone TemnepaTtyp 580-830°C.

OnR XapaKTepr30BHW:- CTEMNEHWM DAINCHEHWA OGEH3IWHOBOM GQPAHUMH
speneHs asTopaMu  HOBLE NoHaslatenu, B  HUHETHYBCHMX YypPaBHEHWAX
pa3patoTaHHuX ANS NPOTOYHHX pPeaHdTopoB Owia 3aMewexa CTeMEHs Pa3no-
MBHMA, ONpPeAENEHHAR aBTOpPaMW, B MBCTO HOHBEPCHW, M Tawum obpas3om
6uNM NONYy4EHH COOTHOWBHWA MOOAXO4RUME H GNMCaHWia obwen CHOPOCTH
pasnomeHnn 68H3HHOBON OPaKUMHH,

ABTOpPaMHM NOKA3AHO,4TO 3HKHCMAHCHA W BLXODA NO OCHOBHLM npogyuram
pBaKuMW — B AMAN330HaX TEeMNEpaTyps M BPEMBHH NPESHBAaHWA, NPUHATHX
fNpY NPOM3BOACTBEHHOM BHEOPDEHWH MMDOJAM3a ~ ABNANTCA  OA4HOIHAYHBEIMH
PYHHUHMAMY CTEMNEHW PA3NOKEHHRA.

Ha ocHOBE HaiieHHBX COOTHOWEHWN, asTopamMu Owna paspaboTaHa
yNpoweHHaR HMHETHYECKAR MOAENe ANA pac4eTa COCTaBa CMECH DEaHund
nuponuaa.
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