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Propylene reacts with H, and Rh,(CO);; at room
conditions to yield butyraldehydes and Rhg(CO)jg. With
higher olefins, isomerization and hydrogenation are
observed as side reactions. The rate of butyraldehyde
formation is of the first order with respect to
Rh,(C0);, and Hy, .and is inhibited by CO, when the
latter =~ if present - is incorporated into the reac-
tion product and partially converts the system into a
catalytic one with regard to rhodium. The rate deter-
mining step is apparently the reaction of Rh,(CO}y2
with Hy; to give mononuclear rhodium cartonyl hydrides
and the hydroformylation of propylenme is accomplished
by these latter species.

The hydroformylation of olefins with rhodium as catalyst [1]

is of considerable potential industrial importance because of the

high activity and good selectivity of this metal compared to the

classical catalyst cobalt. The kinetics and mechanism of hydrofor-
mylation in the presence of Rhy{(C0);, has been studied [2], but up
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to the present time many details of the reaction sequence have re-
mained obscure. It is therefore of both theoretical and practical
interest to obtain further data regarding the reactions occurring

in the rhodium containing hydroformylatién reaction mixture.

RESULTS and DISCUSSION

Rhy(CO);2 reacts in toluene under ambient conditions with Hp
and propylene to form normal- and iso-butyraldehyde and Rhg(CO);g
[3]. 1If the concentration of propylene is high, the reaction is-
complete at 23°C in about 30 hinutes and 90-100 per cent yields of

aldehyde can be achieved as expected from Equation (1):
3 Rhyi(CO)y, + 4 Hy + 4 Cg3Hg —— 4 C3H7CHO + 2 Rhg(CO)1¢ (1)

Fig.l. shows the aldehyde formation dufing a typical experiment.
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Fig.1. S?oichiémetric hydroformylation of propylene in toluene
with .0134 moles Rh,{(CO);; at 23°C in the presence of

hydrogen;propylene pressure 77.5 mm Hg; hydrogen pressure
- 388 mm Hg.
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This reaction is actually a stoichiometric hydroformylation
similar to that described for Co,(CO)g, H, and olefins [4] and
thus its study should also provide some information with regard to
the catalytic process. Experiments were therefore carried out to
determine the kinetics of the aldehyde formation. Only propylene
was used as an olefin in these experiments, since preliminary in-
vestigations had revealed that higher olefins rapidly isomerize
under the conditions used, thus making the evaluation of kinetic
data more difficult. In addition, some hydrogenation of the higher

olefins was also observed as a side reaction.
The initial rate of butyraldehyde formation was found to be

of the first order with respect to sz (as shown in Fig.2.), whe-
reas the concentration of Rhy(C0);; had no effect. The influence

initial rate, mmoles /min
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Fig.2. Dependence of initial rate on hydrogen pressure }n
seice of carbon momoxide (.0134 moles Rh,{CO);, in toluene;

temp. 23°C; propylene pressure 155 mm Hg).

of propylene concentration is shown by the results compiled in Ta-
ble 1. At low concentrations of propylene, the yield of butyralde-
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hyde was appreciably lower than the theoretical 1.33 moles/mole
Rhy(C0);,, whereas at high propylene concentrations the rate of
butyraldehyde formation was only-slightly influenced by Pcaﬁs'

Table 1. Effect of propylene pressure on hydroformylation
(.0134 moles Rh4{C0);2 in toluene; temp. 23°C;
hydrogen pressure 232 mm Hg)

prcpylene initial rate
pressure of C3H7CHO iso/normal aldehyde formed
(mm Hg) formation ‘aldehyde ratio (moles/mole Rhy(CO)js)

(1073 moles/min)

22 0.22 ' 2.0-3.0 0.77
51 0.35 2.0-3.0 0.87
78 0.h3 1.7-1.9 1.12
1k2 1.0L 1.6-1.7 1.24
2ks 1.32 1.6-2.0 -

Carbon monoxide .exerts a strong inhibiting effect on the in-
itial rate of C, aldehyde formation, as shown by Fig.3.; the de-
pendence is approximately described by (pco)_l.

It was found that carbon monoxide admixed to the Hy + C3Hg
gas mixture sarticipates in the reaction and thereby increases the
aldehyde yield above 1.33 moles/mole Rhu(co)lz; until the present
time, the highest yields achieved were between 3.5-4 moles of
C3HyCHO/mole Rhy(CO);,. The incorporation of CO into the product
obviously decreases its concentration in the reaction mixture and
in the gas phase, which leads under appropriate conditions to a
characteristic increase of reaction rate within one experiment as
shown in Fig.4. By simultaneously monitoring the reaction by IR
spectroscopy (for Rhy(CO)j,) and gas chromatography {for C3H7CHO)
it could be shown that as long as the CO concentration is suffi-
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Butyraldehyde concentration vs. time at different carbon
monoxide pressure: 1 -~ CO pressure: 2.5 mm Hg; 2 - CO
pressure: 5.1 mm Hg; 3 - CO pressure; 9.8 mm Hg. (.013%
moles Rh,(CO)j2 in toluene; temp. 237C; hydrogen pressure

232 mm Hg; propylene pressure 155 mm Hg).
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cient, the decline in the Rh,(CO);, concentration is moderate (the
formation " of butyraldehydes is in part due to a "catalytic" ef-
fect), while after CO has been consumed, the transformation of
Rhy{(C0);, becomes very rapid (Fig.5.).
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Fig.5. Butyraldehyde and Rh,{(CO)), Concentration vs. time (star-
© . - ting Rh,(CO);, concentration .0098 moles; temp. 23°C;

hydrogen pressure 232 mm Hg; propylene pressure 155 mm Hg
carbon monoxide pressure 6 mm Hg).

Under the reaction gonditions used, the spontaneous decom-
position of Rhy(CO);2 to Rhg{(CO);¢ and CO cannot be avoided. If
no carbon monoxide is added toc the gas mixture, the actual Peo is

therefore rather ill defined and the kinetic data obtained with

the CO-free system can be regarded only as aproximate. For this

reason, the kinetics of butyraldehyde formation were also deter-
mined at constant low partial pressures of carbon monoxide.

At the actual chosen concentration of carbon monoxide the

CO set . free by the spontaneous decomposition of Rh,(C0);, was
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negligible compared to the quantity of CO added and, at the same
time, the rate of butyraldehyde formation was still sufficiently

high for practical measurements.

The most remarkable difference was found in the influence of
the Rh,(CO);, concentration. As shown in Fig.6., the initial rate
of butyraldehyde formation under constant Ppg was of the first
order- with regard to Rh,(C0);,. The apparent contradiction be-
tween the results obtained with .and without cafbon monoxide . can
be explained by the compensating effect of CO liberated from

Rh,(CO);2, when no carbon monoxide is added to the reaction mix~-

ture.
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Fig.6. Dependence of initial rate on Rhy{(CO);; conceuntration
(temp. 23°C; hydrogen pressure 232 mm Hg; propylene
pressure 155 mm Hg; carbon monoxide pressu?e 6 mm Hg).
The full and open circles refer to two series of exper-

iments.

The presults can most appropriately be interpreted by assum-
ing the rupture of the Rh, cluster to mononuclear rhodium~-carbo-
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nyl hydrides as being the rate determining stage. For this proc-

ess, the following mechanism is suggested:

Rh, (CO);, === Rh,(CO);; + CO (2)
S _ (rate determining mononuclear rhodium-
Rhy (CO) 1y + Hp stage) — > _carbonyl hydrides (3)

The above scheme accords with the observed kinetics

d (aldehyde) sz

———————— =k [Rhy4(CO)ya | —
at pCO

This explanation of the experimental results is further supported

by those measurements, which show that the rate of Rh, (C0),, de-

composition to Rhg(CO0);g is only very slightly influenced by the

absence or presence of propylene (see. Table 2.).

Table 2. Effect of propylene on the decomposition of Rhy (CO) 12
(sterting Rh,(CO)j, concentration .0067 moles in
o~xyléne; temp. 359C; hydrogen pressure 310 mm Hg;
carbon monoxide pressure 18 mm Hg).

propylene pressure percéntage of th(CO)]z
(mm Hg) decomposed in 1 min.
0 0.k
b7 v 0.6
k70 - : 1.35

The rate measurements yieldéd no information on the reac-
ticn of the mononuclear rhodium carbonyl hydrides with propylene
and the association of the mononuclear fragments to Rhg(CO)ye- It
is now evident that the actual hydroformylation reaction cycle
responsible for aldehyde formation has to be kinetically studied
under -catalytic conditions (75°c, 100-200 atm.), for this atmos-
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pheric system may show how the transformation of Rhy(CO)j, emerges
into the catalytically active species (HRh(CO)x). Since this
latter process necessarily constitutes the first step in cataly-
tic hydroformylationAexperiments, the results may be useful for
the interpretation of induction periods eventually ob;erved.

EXPERIMENTAL

Materials. All gases were analyzed by GLC. Thé toluene sol-
vent was purified by distillation, followed by preparative gas-
chromatography on a PEG column at 150°C. 0.1 per cent n-Heptane was

used as an inner standard.

Rhy (CO);, was prepared from Rh,(C0),Cl, at 80°C and 300 atm.
CO in the presence of moist NaHCOj3 in hexane. The product was sep-
arated by «chilling the solution to -78°C and purified by recrys-

tallization from hexane.

Apparatus. Experiments were performed in a 50 ml thermo-
stated flask equipped with a magnetic stirrer, silicon rubber tap
and a small cup for the Rh,(CO);,, the latter could be overturned
from the outside without opening the reaction vessel. Pressure

was maintained at 800 mm Hg by a mercury seal.

Reaction of Rhy,(CO);, with Propylene and H,. Rh, (CO)y 2
(L ... 10 mg) was measured into the small cup and the reac-
tion vessel was securated three times with the gas mix-
ture used. 1...2 mi solvent was injected by a syringe through the
silicon vrubber tap and stirred for 20 minutes to ensure satura-
tion. Reaction was started by turning the cup and dropping the
Rhy(C0);, into the solvent where it completely dissoived within
less ‘than 1 minute. 10...20 ut samples were taken at regular in-

tervals from the reaction mixture with a syringe and stored be-
fore analysis at =78°C. The aldehyde formed was determined by GLC
{50 m PEG column, 150°C), its quantity was estimated with refer~

ence to the n-heptane standard (area of n-heptane to C4 aldehydes=

= 1.60). If the reaction rate was low, the Rh,{(C0);2 content of
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the same samples could be determined by IR spectroscopy, based on
the intensity of the 1890 em ' band.
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PE 31OME

Mpr oBb4HLUX yCAOBMAX MPONWABH B3auMojedcTeyeT C BOAOPOLOM
m Rhy,(CO)12 npw o6pasoeanum OyTupanbaerwga u Rhg{(CO)yg. B cnyvae
6onee BHCOMMX ONEYHMHOB HAONKAENWCHL B HayYyecTBe NDG0YHBIX PEAHUHMH
H3oMepu3aumas W rugporedHnsaumna. CHopoctTe o6pa3osadunr OGyTupanbierwia
NPONOpUMOHAaNeHa HOHUBHTPAUHK th(co)lzunu H,, a obBpaTHOo nponop-
LHMOHaneHa HoHuBHTpauuu CO, lpu Hanuduu nocnegHen, ©Ha BCTPOWTCHA
B8 MPORYHT pePHuMH, M  CHCTEMa fPaKTHYEeCHW NpespawaeTcA B Npouecc
HaTanuaupoeaHHu poguvem. OApPeaenAwWMM  CHOPOCTL 3TanoOM O4EBHAHO
ABMAETCA pe=-<unmA Rh,(C0);, ¢ BOAOpPOAOM, HOrpa ob6pasayeTcR ruApHA
KapboHUNa [ _-4WA C O4HWM AZPOM, a rWAPOOCPMMAMPOBAHWE °~ NPONWNEHa
NPOMCXOAUT YEepe3 3TOT COHOAAPOBLN HKOMMJISHC.
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