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This paper presents a novel approach to test and to pretune advanced controllers to reduce the onsite work of control 
engineers and to train operators using advanced control solutions. Following the proposed approach a simulation 
framework has been developed where detailed process model realized in Matlab which is connected via OPC (Object-
Linking and Embedding for Process Control) to the Profit Controller of Honeywell. With the application of the resulted 
simulation system the model predictive control (MPC) of a nonlinear crystallizer has been analysed. The case study 
demonstrates the efficiency of the proposed approach and the illustrative results show that the linear and robust MPC is 
an adequate controller of nonlinear crystallizers. 
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Introduction 

The interest for the use of dynamic simulation techniques 
in process industry is growing continuously, new fields 
of applications appear and become more reliable. Areas 
such as engineer and operator training [1,2], design or 
test before commissioning of a new control system are 
only some examples where simulation-based methods 
are being applied. In particular, process simulators are 
found in those industries where training is essential for 
plant security or process operation. The use of simulators 
facilitates a deeper knowledge of the process and its 
behaviour in different operating conditions, so that it can 
be manipulated without risk and minimizing production 
losses. All these factors have an impact in the global 
improvement of plant performance. 

For control applications, fairly simple models obtained 
by identification from plant data can give good results, 
but a simulation for operator training should be based 
on a first-principles model, able to reflect many details 
of the process and to cover a wide range of operating 
conditions [3]. Process modelling is a powerful technology 
that enables managers and engineers to link critical 
business objectives to improve the design, operations 
and optimization of a plant [4, 5].  

In the literature it is possible to find examples where 
steady state and dynamic modelling have been used to 
improve unit operation and control scheme design, even 
in industrial cases [6, 7]. Unfortunately, in these papers 
very limited information is published concerning the 
applicability of process simulation tools at the plant level. 
Apart from some specific examples related to operator 
training [8, 9], the advantages of using state-of-the-art 
commercial simulation tools at the plant level, e.g. for 

the improvement of process behaviour, are not well 
presented. However, it should be noted that the process 
industry has already started to move towards a more 
direct application of modelling tools and some engineering 
organizations have set up guidelines for the use of 
computer software in the design of process plants [10]. 

According to these experiences, the possible benefits 
of the simulation based process development are the 
following: 
● Maximizing the return on capital employed by predict 

the future of the plant today 
● Allowing the usage of what-if scenarios and 

sensitivity analyses to identify the optimal design, 
based on operational and business targets [11] 

● Ensuring that process equipment is properly specified 
to assure desired product throughput and specifications 

● Preparing plant assets for profitable, reliable and 
safe production [12, 13] 

● Improving profitability by using simulation online 
for enhanced process control and optimization [14] 

● Allowing the evaluation of the effect of feed changes, 
upsets and equipment downtime on process safety, 
reliability and profitability 

● Training plant staff to ensure they can react to 
abnormal situations and run the plant at safe, yet 
optimal levels of production 

● Improving the design of regulatory and advanced 
control strategies for better plant control and 
operability 
 
The goals of the development approach proposed in 

this paper are mainly the last two; design a simulation 
framework that is able to test and pretune advanced 
controllers to reduce the onsite work of control engineers, 
and to train process operators how to use the controller.  
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In the developed tool a detailed engineering (first-
principles) process model is implemented in Matlab. 
This model is connected via OPC (Object-Linking and 
Embedding for Process Control) to a model predictive 
controller (MPC). Since the aim of the tool to pre-test 
the efficiency of the advanced control solution in 
industrial environment, the studied controller is the 
Profit Controller of Honeywell which is widely used in 
the process industry.  

In the following section an overview of the structure 
and the elements of the proposed framework are 
highlighted, where the model in general, the model 
predictive controller, and the OPC connection between 
these elements are presented. This section is followed 
by a case study where the details of the simulator and its 
implementation are showed through the control of a 
continuous vacuum crystallizer. 

Structure of the proposed  
simulation environment  

The proposed simulation system is based on the synthesis 
of the process (model) and the controller.  

Components of the combined simulation system are 
(see Fig. 1): 
● the detailed engineering model of the technology, 

realized in Matlab (of course other simulation tool 
could also be used), 

● the controller model, which is a real-time, industrially 
used model based controller (In this study predictive 
controller (MPC) is used as advanced control 
solution.), 

● and the connection of the two elements above, which 
is the standardized OPC (originally OLE-Object 
Linking and Embedding for Process Control). 

 

As it is shown in Fig. 1, the model is considered to 
act like the real plant, the manipulated variables (mainly 
the setpoints for the controllers, e.g. temperature controller) 
are the inputs of the model, while the outputs of the 
controller are the controlled variables (e.g. delivery). 

The value of these variables are transferred from the 
model to the controller via OPC. 

 

Controller 

Controlled 
variables 

OPC Manipulated 
variables 

Model 
 

Figure 1: The sheme of the simulator system 
 

In the next section the elements of the system are 
presented. Following this overview the details of the 
implementation are presented in a case study through an 
example connected to a particular model of a crystallizer 
and controller.  

Model 

“Modelling means the process of organizing knowledge 
about a given system” [15]. “A model (M) for a system 
(S) and an experiment (E) is anything to which E can be 
applied in order to answer questions about S” [16]. “By 
performing experiments, we gather knowledge about the 
system. However, at the beginning of this process, this 
knowledge is completely unstructured. By understanding 
what are the causes and what are the effects, by placing 
observations in a temporal as well as spatial order, we 
organize the knowledge that we gathered during the 
experiments” [17].  

For different functions in different environments, 
different models have to be applied. Models can be used 
during the whole lifecycle of a plant, e.g. in the design, 
the operation and in the optimization phase as well. 
Such simulation lifecycle is presented in Fig. 2.  

 

 
Figure 2: The simulation lifecycle at Honeywell 
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In this paper the model has not only to be able to 
cover a wide range of operating conditions, but it has to 
be also adaptable to the process control system via OPC. 

Controller 

Model predictive control refers to a class of computer 
control algorithms that utilize an explicit process model 
to predict the future response of the plant [18]. The 
technique was originally developed to meet the specialized 
control requirements of power plants and petroleum 
refineries [19]. MPC technology can now be found in a 
wide variety of application areas including chemicals, 
food processing, automotive and aerospace applications. 

In model predictive control, the control action is 
provided after solving – in real time at each sampling 
instant – an optimization problem, and the first element 
in the optimized control sequence is applied to the 
process (receding horizon control). The “moving 
horizon” concept of MPC is a key feature that 
distinguishes it from classical controllers, where a pre-
computed control law is employed. A major factor in 
the success of model based predictive control is its’ 
applicability to problems where analytical control laws 
are difficult, or even impossible to obtain. 

A model is used to predict the future plant outputs, 
based on prior and current values and on the proposed 
optimal future control actions. These actions are 
calculated by the optimizer, taking into account the cost 
function (where future tracking error is considered) as 
well as the constraints, for the details see [20]. 

In this paper a real, industrially used MPC, the Profit 
Controller was applied. The Honeywell’s Profit® 
Controller controls the process using the minimum 
manipulated variable movement necessary to bring all 
of the process variables within limits or to setpoints. 
This controller also optimizes the process with the 
remaining degrees of freedom in order to drive the 
process to optimum operation. Profit Controller uses 
Honeywell's patented Range Control Algorithm (RCA) 
[21]. RCA minimizes the effects of model uncertainty 
while determining the smallest process moves required to 
simultaneously meet control and optimization objectives.  

The models for the prediction were also identified in 
Honeywell’s software environment. The overall process 
model is composed of a matrix of dynamic sub-process 
models, each of which describes the effect of one of the 
independent variables on one of the controlled variables 
[22]. 

Integration issues  

The integration of a process simulator and the controller 
was performed with OPC. This standard specifies the 
communication of real-time plant data between control 
devices from different manufacturers. OPC was designed 
to bridge Windows-based applications and process 
control hardware and software applications. 

During the integration, the variables have certain 
definite names (e.g.: MV01.ACTIVEVALUE) called tag. 
The communication can be asynchronous or synchronous, 
and the sampling time has to be set.  

OLE for Process Control which stands for Object-
Linking and Embedding for Process Control, is the 
original name for an open standard specification 
developed in 1996 by an industrial automation industry 
task force (See http://www.opcfoundation.org). The 
standard specifies the communication of real-time plant 
data between control devices from different 
manufacturers. 

While OPC originally stood for “OLE for Process 
Control”, the official stance of the OPC Foundation is 
that OPC is no longer an acronym and the technology is 
simply known as “OPC”. One of the reasons behind this 
is while OPC is heavily used within the process 
industries, it can be, and is, widely used in discrete 
manufacturing as well. Hence, OPC is known for more 
than just its applications within process control. 

The OPC Specification was based on the OLE, 
COM, and DCOM technologies developed by Microsoft 
for the Microsoft Windows operating system family. 
The specification defined a standard set of objects, 
interfaces and methods for use in process control and 
manufacturing automation applications to facilitate 
interoperability. 

Case study 

The proposed simulation framework was tested for the 
model based control of a vacuum crystallizer.  

The crystallizer is a non-linear, multi input multi 
output (MIMO) object, with a high degree of interaction 
between the process variables. The control of this 
process has many difficulties, e.g. one can do nothing if 
the crystals grow beyond a certain size, there is no 
opposite way of change. For all of these problems, a 
Model Predictive Controller presents a good solution. 
MPC can handle the MIMO object; and it is predictive, 
so the controller “prevents” oversized crystals. For non-
linearity within a certain range, a robust controller can 
be adequate. 

These problems are tested below in the presented 
simulation environment. 

Simulation details 

Vacuum crystallizers are able to produce crystals of a 
certain quality as fast as possible using the minimum 
amount of energy. The description of the studied vacuum 
crystallizer and its model can be found in [23].  

From controlling point of view a crystallizer the 
main quality criterions are the properties of the produced 
crystals, the size and the size-distribution. The delivery 
of the crystallizer can be also controlled. 

So, the outputs (the controlled variables, called CVs) 
calculated from the moments are the following: 
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● Mean crystal size 
● Standard deviation of the crystal size distribution 
● Delivery of the crystallizer 

 
From the process point of view, in a continuous 

vacuum crystallizer, the pressure, the temperature and 
the residence time can be changed in practice. In the 
environment of the model the inputs (the variables to be 
manipulated, called MVs), are the following:  
● Pressure; can be controlled with partial pressure by 

the valve of the vapour outlet 
● Temperature; can be changed with the inlet 

suspension temperature 
● Residence time 

 
There is a strong coupling between the inputs and 

the outputs, for example any change of the residence 
time in the vacuum crystallizer not only changes the size 
but the size distribution (and of course the delivery).  

To summarize, the above presented crystallizer is a 
non-linear object, with a high degree of interaction 
between the process variables.  

The robustness of the controller is tested in the 
following case study, where a non-linear process is 
controlled by a linear MPC. This solution is widely 
applied in the industry, since the non-linearity of the 
process can often be handled by the linearization of the 
process model or the process is operated within a 
relatively narrow range where the process may act 
linearly. 

Implementation details 

The first-principle model of the process has been 
developed in Matlab simulation environment. The 
Honeywell environment of the Profit Controller is also 
set up as OPC server. According to this solution, the 
OPC Read and OPC Write toolboxes of Matlab are used 
to connect the Profit Controller of the crystallizer 
(Hci.CRYST).  

Matlab Simulink view of this solution can be seen in 
Fig. 3, where the red boxes are connected to the Profit 
Controller. In this platform, some measurement noise is 
added to the controlled signal to get closer to a real-time 
environment. During the simulation, this Simulink 
program is sending and getting the data from the 
controller at every minute.  

Profit Viewer is used to supervise the parameters 
and performance of the Profit Controller [21], the online 
model predictive controller of Honeywell. This program 
serves as a Windows based graphical user interface, see 
Figs 4 and 5. In the CV Summary display the operator 
can change the limits or the setpoints of CVs. The 
VALUE comes from the process unit (now from the 
model), the SS VALUE is the predicted steady state 
value while STATUS shows whether the CV is 
controlled by MPC or not. MV Summary screen shows 
the actual inputs (VALUE), how it has changed in the 
last execution period (MOVE) and the steady state 
values (SS VALUE). In normal conditions, the operators 
do not change the limits of MVs. 

 

 
Figure 3: Matlab Simulink view of the process, connected to the controller 
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Figure 4: One of the main Profit Viewer screens, CV summary  

 

 
Figure 5: One of the main Profit Viewer screens, MV summary 

 
Results 

The main goal of the model predictive controller was to 
follow the setpoint that defines the desired size of the 
crystals. The standard deviation of the size distribution 
was minimized within a certain range, but the 
maximization of the volume was set to be a more 
important priority than this goal.  

The default control horizon (where the manipulated 
variables change in the prediction) in the Honeywell 
controller contains 10 movements of the MVs. The 
prediction horizon (where the prediction is calculated) is 

 
identical to the open loop response interval which is 
about 1.5 hours in this case. 

Weights, rate of change limits, ramping limits and 
other tuning parameters were set up in the Profit 
Controller manually, based on the results of previous 
simulation experiments.  

The optimization speed factor was set to three (fast), 
which resulted in an optimization horizon approximately 
two times of the CV overall response time. The CV 
overall response time was defined as the average of the 
longest CV response time and the average CV response 
time, 123 minutes in this case.  
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The simulation results are shown in Figs 6 and 7. 
The dashed lines are the setpoint for CV1 and the 
minimum and the maximum limits of CV3. The limits 
of CV2 are irrelevant.  
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Figure 6: Simulation results for the controller, 

optimizer, with controlled variables  
(CV1 = crystal size, CV2 = crystal size-distribution, 

CV3 = delivery of the crystallizer) 
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Figure 7: Simulation results for the controller, 

optimizer, with manipulated variables (MV1 = pressure, 
MV2 = temperature, MV3 = residence time) 

 
In the test run the optimizer was turned on at 23:00, 

from that time the CV3 (delivery) increased significantly 
while the CV2 (size distribution) decreased a little to the 
optimal values. CV1 setpoint change was realized after 
a little overshoot, the changes of MVs (Fig. 7) show that 
the controller reacted rapidly.  

When the range of CV3 was changed, the MVs also 
changed fast, and the control problem was solved. CV1 
also changed significantly due to interaction, but it 
calmed down after a while.  

The results shows that the controller optimizes and 
solves the changes in the range, the MVs react rapidly 
but smoothly, and the controller is robust. 

The online measurement of size distribution can be 
difficult. With Profit Controller, the size distribution can 
be an inferred variable calculated from measurable 
variables. It is an often-used technology, for example, to 
control the cutpoints in the refineries. 

During a real commissioning, engineers always check 
the unbiased model CVs, which are calculated from the 
linear model matrix. These model CVs should change 
parallel with the real CVs, it is the validation of the 
models. If the change is too big, then the gain is too big, 
if the unbiased model CV changes appear later, then the 

dead time is too big and the dynamics should be also 
more or less the same. 

According to these rules, linear models were checked 
and changed where it was needed. 

The results are very good, with the final models the 
unbiased and the read CVs are changing parallel. (See 
Fig. 8.)  

 

 
Figure 8: Validation of the models, the bold lines are 

the unbiased model CVs 

Conclusion 

The paper demonstrated a successful application of a 
novel simulation framework, where the detailed 
engineering model of a process unit is connected to a 
widely used advanced process controller (APC) via 
OPC. The solution system can be used to pretune the 
controller, test the controller solution or the operating 
strategy (e.g. grade transition), to train the engineers and 
the operators and in many other simulation cases.  

In the case study, it was examined how a continuous 
vacuum crystallizer can be controlled by MPC using 
this system. The control of the crystallizer is difficult, 
because it is a non-linear MIMO object with strong 
coupling between the variables. The results showed that 
the linear, robust MPC is and adequate controller of a 
nonlinear crystallizer, it is adaptable in real unit. It was 
tested in regulatory and servo mode as well.  

The simulation system has proved to be a very 
convenient tool to test the controllability in this special 
case. According to our knowledge this is the first 
successful integration of the MPC of Honeywell and the 
Matlab simulation environment. The experience gathered 
in this study can be applied in other projects as well. 
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