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Crystallisers are essentially multivariable systems with high interaction amongst the process variables, that’s why it is a 
difficult control problem. In the absence of a real continuous crystalliser, a detailed momentum-model was applied using 
the process simulator in Matlab Simulink. The relative gain array was calculated to try to decouple the input and output 
variables for the setup of single input single output (SISO) PID controllers. The PIDs were tuned, but the control 
performance is not satisfying.  

Model Predictive Controllers (MPC) can handle such highly interacting multivariable systems efficiently due to their 
coordinated approach. The feasibility study illustrated that the applied identification tool gave an accurate and robust 
model, and that the non-linear crystalliser can be controlled and optimised very well with the Honeywell Profit® Suite 
package. The developed system – engineering model in Matlab is connected to an MPC used in the industry via OPC 
(originally OLE-Object Linking and Embedding for Process Control) - is proven to be useful in research and 
development. 
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Introduction 

Crystallization is a widely used cleaning, separation and 
grain-producing technique in the chemical industry, 
particularly within the pharmaceutical industries. The 
main quality criteria (from the point of view of 
controlling a crystalliser) are the properties of the 
produced crystals—let us first consider size-distribution 
and size. Crystallisation is a multi-variable system, with 
multi-input and multi-output (MIMO), often with strong 
coupling. Thus a good, modern approach to control is 
possible using a model-based MIMO control system. 
There are only a few examples in the literature for this 
[1–5]. A predictive type of control would be better than 
the corrective (feedback) type, because crystal size 
cannot be decreased under crystallization conditions. 
One of the main problems is that (because of the 
mentioned properties of the population balance equation), 
for a proper model-based control of this size-distribution, 
a high-order control solution is required, which leads to 
technical difficulties. The crystallisers are dissipative 
systems [6]; hence, a crystalliser as a dynamical system 
possesses finite-dimensional global attractors [7] that 
create an adequate basis for the synthesis and use of a 
good quality, low order model-based control system.  

At the same time, it means that for the synthesis of 
the model based control system of the crystallisers, the 
momentum-model—generated from population balance 
equations as linear differential equations—can be used 
with close approximation. Chiu and Christofides [8] 
applied this property to design a non-linear single input 
single output (SISO) controller.  

To select a proper controller structure first SISO PID 
controllers after a model predictive MIMO control 
systems of a crystalliser are presented in this paper. One 
main advantage the MPC to the set of PIDs is that the 
structural problems are solved inherently, MPC handles 
the assigning loops. 

For the synthesis of the control system, instead of a 
real continuous crystalliser, a moment model of the 
vacuum crystalliser was composed (Section 2, Appendix). 
The control problem (Section 3) and the dynamic analysis 
of the model (Section 4) was presented. In Section 5 the 
crystalliser was tried to control with PID controllers. 
Another kind, more adequate controller, the model 
predictive controller is presented is Section 6. For the 
simulation the detailed model and the MPC of Honeywell, 
the Profit Controller was connected via OPC (originally 
OLE-Object Linking and Embedding for Process Control); 
the simulation results (which gave very satisfactory 
results) are presented in Section 7. In the end some 
comparison is made to PID controller and MPC. 
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Mathematical model of a vacuum crystalliser 

Consider a continuous MSMPR (Mixed Suspension Mixed 
Product Removal) crystalliser in which supersaturation 
is generated using a vacuum. In this case, the 
crystalliser is considered as a three-phase operational 
unit; having liquid, solid and vapour phases, in which, 
under usual conditions, only two chemical species, the 
solvent and solute, take part in the crystallization 
process. (See Fig. 1.) 

 

 
Figure 1: Schematic of a vacuum crystalliser 

 
 Then, the set of process level equations, termed 
rigorous model of the crystalliser, consists of the 
following balance equations: 

● Population balance equation for crystals governing 
the crystal size dynamics 

● Mass balance equation for the crystallizing 
substance 

● Mass balance equation for the solvent 
● Energy balance equation for the vapour phase 

 
It is assumed that the following conditions are satisfied:  
 (1) The volumetric feed and withdrawal rates of the 
crystalliser are constant and equal, thus the working 
volume is constant during the course of the operation;  
 (2) The crystals can be characterized by a linear 
dimension L; 
 (3) All new crystals are formed at a nominal size  
LN ≅ 0 so that one can assume LN = 0; 
 (4) Crystal breakage and agglomeration are negligible;  
 (5) No growth rate fluctuations occur;  
 (6) The overall linear growth rate of crystals G is 
size-dependent and has the form of the power law 
expression of supersaturation  
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 (7) The primary nucleation rate Bp is described by 
Volmer’s model:  
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the secondary nucleation rate Bb is the following: 
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where μ3 is the third of the ordinary moments of the 
population density function n, which are defined as:  
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The model variables are: μ0, μ1, μ2, μ3, WC, MSV, T, 
ΡV, TV i.e. the zero, first, second and third order  
moments of the crystal size, concentration of the solute, 
the solvent mass, the temperature of suspension, the 
vapour density and the temperature of vapour 
respectively. The final moment equation model is 
summarised in the Appendix; the details can be found in 
the paper of Ulbert and Lakatos [9]. 

The Control Problem 

The goal of the above presented crystalliser is to 
produce crystals with a certain quality as far as possible 
using the minimum amount of energy.  

From the point of view of controlling a crystalliser 
the main quality criteria are the properties of the 
produced crystals, the size and the size-distribution. The 
delivery of the crystalliser can be also controlled. 

So, the outputs, the variables to be controlled (called 
CVs), calculated from the moments are the following: 

- Mean crystal size, calculated from the moments 
μ1/μ0 = (x1/S1)/(x2/S2) 

- Standard deviation of the crystal size distribution 
computed as: 

σ2 = μ2/μ0 – (μ1/μ0)2 = (x2/S2)/(x0/S0) – ((x1/S1)/(x0/S0))  

- μ3, delivery of the crystalliser, where kV *μ3 is the 
volume of the produced crystals 

where ST, St, S0, S1, S2 are dimensionless parameters, x0, 
x1, x2 are the dimensionless moments. 
 
From the process point of view, in a continuous vacuum 
crystalliser, the pressure, the temperature and the residence 
time can be changed in practice. In the environment of 
the model the inputs, the variables to be manipulated 
(called MVs), are the following:  

- Pressure; can be changed with partial pressure, 
by the valve constant Ks of the vapour outlet 

- Temperature; can be changed with x7in 
dimensionless inlet suspension temperature, where 
x7in = Tsus, in·ST 

- Residence time; can be varied with ξav 
dimensionless residence time, where ξav = τmean·St 
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Dynamic analysis of the models 

Instead of a real unit, the model of the crystalliser – 
presented above – was stepped in Matlab Simulink 
environment to collect data for the identification of the 
model matrix. The overall process model is composed 
of a matrix of dynamic sub-process models, each of 
which describes the effect of one of the independent 
variables on one of the controlled variables. A sub-
process model describes how the effect of an independent 
variable on a control variable evolves over time. It is 
called the matrix of linear dynamic sub-process models, 
the linear model matrix.  

Each manipulated variable (pressure, temperature, 
residue time) was stepped many times one by one 
considering the time to steady state, as would be carried 
out in an industrial project environment. The object was 
stepped around a stable operating point with reasonable 
step sizes as tested before. 

With the collected data the automated method was 
use for the model identification in Profit® Design 
Studio of Honeywell. [10] 

The identification result is shown in Fig. 2. The 
manipulated variables (MV1 = Ks, MV2 = x7in, MV3 = ξav), 
are in columns, the controlled variables (CV1 = μ1/μ0, 
CV2 = σ2, CV3 = μ3) are in the rows. For better 
conditioning of the problem, the magnitudes of the CVs 
were changed; multiplied by 103, 107, 103 respectively. 
The model is the darker line; the data is the lighter, 
covered.  

Profit Design Studio found good models quickly with 
an automated identification method. All sub-models’ 
qualities are good, Rank 1 or 2 in the range of 1-5, 
where 1 is the best (model ranking is a standard feature 
of the package and uses a variety of measures to give an 
overall rank or “goodness of fit” [10] 

The settling time for the process data and the settling 
time from the calculated transfer function, Settle T and 
TfSettle respectively, are close to each other for all sub-
models.  

In this case the model matrix is full, all the CVs are 
in connection to all the MVs. With pressure (MV1), the 
size (CV1) and the size-distribution (CV2) models have 
a highly inverse response, by increasing the pressure, 
the size and size-distribution decreases first and then 
increases, because the nucleation is changing. With this 
accurate identification the high order sub-models can 
follow the special behaviour of the object. 

The Inlet temperature (MV2) - delivery (CV3) model 
also appears to be an inverse response model, because 
by increasing the temperature, the discharge temporary 
increased.  

BUT the overshoots and high order models would be 
too sensitive to model error and it would not work in 
model based controller. These responses are all real but 
even a slight error in these models (and they will vary in 
practice as the model is never perfect) will lead to out of 
phase control which will lead to oscillation. So the 
oscillation of the models were removed, the simplified 
robust model is presented in Fig. 3, the model is the 
darker line, the data is the lighter.  

 

 
Figure 2: The accurate model matrix 
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Figure 3: Models used for the control study 

 
The relative gain array was calculated to decide the 

best pairings. 
Since its proposal by Bristol in 1966 [11], the 

relative gain technique has not only become a valuable 
tool for the selection of manipulative-controlled variable 
pairings, it has also been used to predict the behaviour 
of controlled responses. The relative gain array (RGA) 
can be easily calculated from the gains of the model 
matrix (K): 
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The result of the calculation from the used model 
matrix (see Fig. 4): 
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It is an obvious proof of strong coupling. 
Since the best value for pairing is 1 but it shouldn’t 

be negative and 0 [12] the only pairing is the following, 
showed with bold numbers: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=

181.0018.1
669.2837.0

651.10

0.163
2.832

2.651
Λ  (8) 

So MV1 controls CV3, MV2 controls CV1 and CV2 
is controlled by MV3. 

Control with PID controllers 

First PID controllers were set up and tuned for the 
vacuum crystalliser.  

PID is a single input single output (SISO) controller 
and as it is showed in that the crystallisers are MIMO 
object with strong coupling. 

The starting points of the PID tunings were 
calculated with the strategy based on Internal Model 
Control (IMC). [12] 

PID controller in IMC structure: 
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In case of a first order model  
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The parameters of the PID controllers were finetuned, 
the MVs were limited, the control structure can be seen 
in Fig. 4. 

The result shows (Figs 5 and 6) that the coupling is 
strong, PID controllers can not really handle this MIMO 
object. The new setpoint of CV1 couldn’t reach, but for 
CV3 it is good. 
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Figure 4: The structure of PID control of the crystalliser model 
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Figure 5: Simulation results with PID controllers, controlled variables  

(CV1=crystal size, CV2=crystal size-distribution, CV3=delivery of the crystalliser) 
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Figure 6: Simulation results with PID controllers, manipulated variables 

(MV1=pressure, MV2=temperature, MV3=residence time) 
 

It is proved that there is a strong coupling between 
the inputs and the outputs, for example by changing the 
residence time in the vacuum crystalliser not only the 
size but the size distribution (and of course the delivery) 
changes.  

To summarise, the above analysed crystalliser is a 
non-linear object, with a high degree of interaction 
between the process variables. One can do nothing if the 
crystals grow beyond a certain size. For all of these 
problems, a model predictive controller (MPC) presents 
a good solution. MPC can handle the MIMO object; and 
it is predictive, so the controller “prevents” over-size 
crystals.  

For non-linearity within a certain range, a robust 
controller is adequate as it presented below. 

Model Predictive Control 

Model predictive control (MPC) refers to a class of 
computer control algorithms that utilise an explicit process 
model to predict the future response of the plant. [13] 

Originally developed to meet the specialised control 
needs of power plants and petroleum refineries [14], 
MPC technology can now be found in a wide variety of 
application areas including chemicals, food processing, 
automotive and aerospace applications. The presented 
work is an opening to another new application, the MPC 
control of continuous crystallisers. 

In model predictive control, the control action is 
provided after solving – on-line at each sampling instant 
– an optimisation problem, and the first element in the 
optimised control sequence is applied to the process 
(receding horizon control).  

The “moving horizon” concept of MPC is a key 
feature that distinguishes it from classical controllers, 

where a pre-computed control law is employed. A major 
factor in the success of model based predictive control 
is its’ applicability to problems where analytical control 
laws are difficult, or even impossible to obtain. 

A model is used to predict the future plant outputs, 
based on past and current values and on the proposed 
optimal future control actions. These actions are 
calculated by the optimiser, taking into account the cost 
function (where the future tracking error is considered) 
as well as the constraints. 

The methodology of all the controllers belonging to 
the MPC family is characterised by the following strategy, 
represented in Fig. 7 (u is the input y is the output and w 
is the set-point). From the Section 3 with this classical 
notation u = (Ks, x7in, ξav), and the y = (μ1/μ0, σ2, μ3).  

For MPC the prediction horizon (Hp) represents the 
number of samples taken from the future over which 
MPC computes the predicted process variable profile 
and minimises the predicted error. The control signals 
change only inside the control horizon, Hc remaining 
constant afterwards:  

u(k + j) = u(k + Hc – 1),      j = Hc, ..., Hp – 1 
 

FUTUREPAST

Control horizon

Prediction horizon

u(.)

w(.)

y(.)

k

k+1k-1k-2 k+2

 
Figure 7: MPC horizons 
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The basic steps: 
1. In the MPC future outputs for a determined 

prediction horizon Hp are predicted at each instant k 
using a prediction model. These predicted outputs 

pHjkjky ,...1),(ˆ =+  (means the value at the instant 
k+j, calculated at instant k) depend on the known 
values up to instant k (past inputs and outputs) and 
the future control signals u(k+j|k), j = 0,..Hp-1., which 
are those to be sent to the system and to be calculated. 

2. The set of control signals is calculated by optimising 
a cost function in order to keep the process as close 
as possible to the reference trajectory w(k+j),  
j = 1,..Hp or to keep inside the range.  

3. The control signal u(k|k) is sent to the process whilst 
the next control signals calculated are rejected, 
because at the next sampling instant y(k+1) is already 
known and step 1 is repeated with this new value 
and all the sequences are updated. Thus the 
u(k+1|k+1) is calculated (which in principle will be 
different to the u(k+1|k) because of the new 
information available) using a receding horizon 
concept. 

 
The details of MPC are presented by Moldoványi 

and Lakatos. [15] 
Honeywell’s Profit Controller controls the process 

using the minimum manipulated variable movement 
necessary to bring all of the process variables within 
limits or to setpoints; and to optimise the process with 
the remaining degrees of freedom in order to drive the 
process to optimum operation. Profit Controller uses the 
Honeywell patented Range Control Algorithm (RCA) 
[10]. RCA minimises the effects of model uncertainty 
while determining the smallest process moves required 
to simultaneously meet control and optimisation 
objectives. The robustness of the controller is tested in 
this study, since a non-linear object was controlled with 
a linear MPC. The issues of using a linear controller in 
order to control a non-linear process may not be as big 
an issue as is first expected. There are two reasons for 
this. Firstly, the non-linearity, non-linear region or non-
linear variable(s) may sometimes be linearised where it 
is well understood. Secondly, within the relatively narrow 
range of normal operation of a process, the process may 
be said to act linearly within these limits. 

Profit Controller application includes the necessary 
tools to design, implement and maintain MIMO 
applications. 

Control with MPC 

The integration of a process simulator and the MPC of 
Honeywell was performed with OPC (originally OLE-
Object Linking and Embedding for Process Control). 
This standard specifies the communication of real-time 
plant data between control devices from different 
manufacturers. OPC was designed to bridge Windows-

based applications and process control hardware and 
software applications.  

In the absence of a real crystalliser, the engineering 
model acts like the unit, connected to the controller via 
OPC. For the non-linear model in Matlab the inputs are 
the MVs, which are the controller outputs. The Matlab 
model calculates the CVs and sends them to the 
controller via OPC every minute, see Fig. 8. 

 

Profit 
Controller 

Crystallizer 
(model) 

MVs CVs 
OPC 

 
Figure 8: The control shame with Profit Controller 
 
The control horizon (where the manipulated variables 

changes in the prediction) contains 10 movements of the 
MVs, in the Honeywell controller, the control horizon 
for each CV is based on a gain weighted average of the 
individual models in that row of the matrix. 

The prediction horizon (where the prediction is 
calculated) is the closed loop response interval, this is 
about 1.5 hours in this case. 

Weights, rate of change limits and ramping limits, 
and other tuning parameters were set up in Profit 
Controller.  

The size was controlled to a setpoint, it followed the 
changes that were made correctly. The standard deviation 
of the size distribution was minimised within a range, 
but the maximisation of the volume was set to be a more 
important priority. The cost function is J= σ2-10·μ3, 
quadratic coefficients and optimisation of the manipulated 
variables were not set up. 

The optimisation speed factor is 3 (fast), which 
results in an optimisation horizon approximately 6/3=2 
times the CV overall response time. The CV overall 
response time is defined as the average of the longest 
CV response time and the average CV response time, 
123 minutes in this case.  

The simulation results are shown in Figs 9 and 10. 
The dashed lines are the setpoint for CV1 and the 
minimum and the maximum limits of CV3. The limits 
of CV2 are irrelevant.  

In the test run the optimiser was turned on at 23:00, 
from that time the CV3 (delivery) increased significantly, 
the CV2 (size distribution) deceased a little to the 
optimal values. CV1 setpoint change is solved after a 
little overshoot, the changes of MVs (Fig. 10) show that 
the controller reacts rapidly. When the range of CV3 is 
changed, the MVs change fast, and the control problem 
is solved. CV1 also changed significantly due to 
interaction, but it calms down after a while.  
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Figure 9: Simulation results for the controller, optimiser, with controlled variables  
(CV1=crystal size, CV2=crystal size-distribution, CV3=delivery of the crystalliser) 
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Figure 10: Simulation results for the controller, optimiser, with manipulated variables  

(MV1=pressure, MV2=temperature, MV3=residence time) 
 

The results shows that the controller optimises and 
solves the changes in the range, the MVs react rapidly, 
but smoothly, and the controller is robust. 

One main advantage the MPC to the set of PIDs is 
that the structural problems are solved inherently, MPC 
handles the assigning loops. There is a difference in 
complexity between the two controllers. According to 

engineering experience the more complex the technology 
the more complex the control system, but the slope of the 
relation depends on the kind of controller. See Fig. 11. 
For simple cases, PID is easier, but for a difficult one 
MPC can be the easier controller to implement. Already 
for this 3 input, 3 output case the decoupling is difficult, 
MPC can handle the MIMO object without problem. 
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Complexity of 
the controller PID 

MPC

 
Figure 11: The relationship between the complexity of 

the technology and the controller 

Conclusion 

Crystallisers are multivariable objects with coupling 
among the process variables.  

The relative gain array was calculated to try to 
decouple the input and output variables for the setup of 
single input single output (SISO) PID controllers. The 
PIDs were tuned, but the control performance is not 
satisfying.  

Model Predictive Controllers (MPC) can handle 
such highly interacting multivariable systems efficiently 
due to their coordinated approach. The feasibility study 
illustrated that the applied identification tool gave an 
accurate and robust model, and that the non-linear 
crystalliser can be controlled and optimised very well 
with the Honeywell Profit® Suite package. The 
developed system – engineering model in Matlab is 
connected to an MPC used in the industry via OPC is 
proven to be useful in research and development. 
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Appendix 

The moment equation model of a continuous vacuum 
crystalliser is formed by the following equations [9]. 

Zero order moment: 
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First order moment: 
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Second order model: 
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Third order model: 
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Mass balance for solute: 
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Mass balance for the solvent: 
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Energy balance equation for the crystal suspension: 
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sV C

Hacck Δ
+−+ ))((3 32 μμργ  (A7) 

where Cav = Csv + Cc + kV ρCμ3 and  
Cavin = Csv + Ccin + kV ρCμ3in. 

Mass balance equation for the vapour phase: 

⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= inV

in

sv
svinvvvv

sv

v

v

v kcFqW
Vdt

d
3

111 μ
ρρ

ρρ
ρ
ρρ

⎥
⎦

⎤
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++− 3

1 μ
ρρ

ρ V
sv

svv kcF  (A8) 

where the steam removal of the evaporated solvent was 
modelled by a controlled valve having characteristics 

( )outvvsvvvv pppKqF −== ρρ .  (A9) 

Energy balance equation for the vapour phase: 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

−
−=

v

v
vvvv

vvvv

dT
dC

TTCV

WTTC
dt

dT

ρ

)( . (A10) 

where: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−= 3

1 μ
ρρ V

sv
svv kcMVV  (A11) 

The constitutive equations associated with the moment, 
mass and energy balance equations were as follows. 

Temperature dependence of the solubility: 

( ) 2
210 TaTaaTcs ++=  (A12) 

Evaporation rate of the solvent: 

( )∗−= vvevapv ppKW   (A13) 

where the vapour pressure was computed by the Antoine-
equation: 

A

A
Av CT

BAp
+

−=∗log   (A14) 
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While the state of vapour was predicted by the ideal 
gas law: 

v

v
v V

RTp = . (A15) 

NOTATION 

a constant of the crystal growth rate [m-1] 
b exponent of secondary nucleation rate 
Bp primary nucleation rate [no m-3s-1] 
Bb secondary nucleation rate [No m-3s-1] 
c concentration of solute [kgm-3] 
cs equilibrium saturation concentration [kgm-3] 
Dap dimensionless parameter for primary nucleation  
Dab dimensionless parameter for secondary nucleation 
g exponent of crystal growth rate  
G crystal growth rate [ms-1] 
j exponent of secondary nucleation rate  
ke parameter of primary nucleation rate  
kg rate coefficient of crystal growth [m3g+1 kg-g s-1] 
kp rate coefficient of primary nucleation [no m-3s-1] 
kb rate coefficient of secondary nucleation  
 [no m3b-3 kg-b s-1] 
kV volume shape factor  
L linear size of crystals [m]  
n population density function [no m-4] 
sc scale factor of the concentration [kg-1m3] 
sm scale factor of the mth order moment of  

n (m = 0,1,2,...)  
xm mth order dimensionless moment (m = 0, 1, 2, ...)  
y dimensionless concentration of solute  

GREEK LETTERS 

ε  viodage of suspension  
μm mth order moment of n [mm-3] 
ρc density of crystals [kgm-3] 
ξ dimensionless time  

SUBSCRIPTS 

0 initial value  
in inlet value  
p primary nucleation 
b secondary nucleation  
S steady state 
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