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In the process industry, flowsheet models are commonly used to create digital representations of real processes. 
While these models provide detailed simulations, they often struggle with computational demands in dynamic 
operating environments. Surrogate models offer a more efficient alternative, but their level of accuracy must be 
continuously aligned with actual system behavior. This paper presents an MLOps-aligned online surrogate 
calibration method that maintains and improves surrogate model accuracy by dynamically incorporating localized 
operational data. Unlike traditional global surrogates trained on static datasets, the proposed approach adapts to 
changing conditions while preserving previously learned knowledge, effectively addressing the challenge of 
catastrophic forgetting. Demonstrated on a heat exchanger network, the method significantly improves prediction 
accuracy in previously unmodeled operating regimes, enhancing the robustness and reliability of digital twins in 
industrial applications. 
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1. Introduction 

Simulation and optimization are essential in the process 

industry to achieve operational efficiency and ensure 

system safety [1]. Traditionally, detailed process 

simulations are carried out using high-fidelity flowsheet 

models, which support in-depth analysis, scenario 

evaluation, performance enhancement and equipment 

condition monitoring [2]. These models, grounded in 

physical laws and thermodynamic relationships, serve as 

reliable tools for data-driven decision-making. However, 

maintaining their accuracy over time can be challenging, 

especially when integrated into real-time applications 

where the underlying physical systems evolve 

continuously [3]. 

To overcome the computational complexity of 

flowsheet simulations, surrogate models—also referred 

to as reduced-order or metamodels—have emerged as a 

practical alternative [4]. These models emulate the 

behavior of complex simulations using simplified 

mathematical frameworks, thereby enabling faster 

analysis and optimization. Constructing an effective 

surrogate model typically requires sampling data from 

the original high-fidelity flowsheet model. Two common 

approaches are one-shot sampling and adaptive sampling 

[5]. One-shot techniques, such as Latin Hypercube 

Sampling (LHS), generate statistically distributed 

samples across the design space in a single step [6]. In 

contrast, adaptive sampling strategies iteratively select 
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new data points to enhance the precision of a model with 

fewer evaluations [7]. 

While both sampling strategies are efficient with 

regard to initial surrogate development [4], they may not 

ensure a sufficient level of accuracy during its actual 

operation. The real system may operate in regions that 

were underrepresented or completely absent in the initial 

sampling, especially when the operating range of a 

derived parameter is unknown beforehand. As a result, 

surrogates trained offline may underperform in dynamic 

or previously unseen regimes. 

To address this gap, online learning offers a way to 

refine surrogate models during their implementation by 

incorporating real-time data. This continuous adaptation 

enables the model to respond to new operational 

scenarios and maintain predictive accuracy. This study 

proposes and evaluates an online surrogate learning 

framework that iteratively updates the model based on 

observed process data. The goal is to maintain a high 

level of accuracy across both well-known and emerging 

operating conditions, enhancing the robustness and 

reliability of the surrogate in practical industrial settings. 

2. Methodology 

In practical applications, surrogate models are used to 

replace high-fidelity simulations for the purpose of 

https://doi.org/10.33927/hjic-2025-15
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reducing computational load. In this research context, the 

role of a surrogate model is to support the calibration of 

the flowsheet model by estimating calibration factors that 

align the simulation with the real process [8]. To 

demonstrate the effectiveness of online learning 

approaches, this study focuses on retraining the surrogate 

model. In simple terms, the flowsheet model is treated as 

a stand-in for the real system, generating data that the 

surrogate is expected to replicate. It is assumed that the 

flowsheet model accurately represents the real process at 

all operating points and the surrogate model learns from 

this data accordingly. 

2.1. Problem statement 

LHS is a widely used one-shot technique for surrogate-

model training due to its ability to maintain generality as 

dimensionality increases, while ensuring well-distributed 

sampling across the input space [9]. This method requires 

predefined minimum and maximum ranges for each input 

parameter, typically based on the normal operating 

window of the real process. However, defining 

appropriate ranges becomes challenging for derived 

parameters—such as fouling factors in heat 

exchangers—when prior knowledge is lacking. As 

illustrated in Figure 1, if the surrogate model is trained 

on hypothetical parameter ranges that differ significantly 

from the actual distribution observed while in operation, 

its predictive accuracy can reduce. 

Ideally, surrogate-model training would be based 

on the true parameter ranges relevant to the system, but 

this information is often unavailable during offline model 

development, moreover, only becomes accessible once 

the model is deployed and real operational data are 

collected. 

2.2. Introduction to online learning 

Most conventional machine learning approaches operate 

under the classical paradigm, where the complete dataset 

is available prior to training. These models are built on 

the assumption that the data distribution remains static 

and the underlying structure does not change over time 

[10]. When new data become available, the typical 

solution is to retrain the entire model from scratch, which 

can be computationally intensive and inefficient. 

In contrast, online learning offers a framework for 

continuous model adaptation in response to a stream of 

incoming data [11]. This approach processes data 

incrementally, updating the model one sample at a time, 

facilitating model training to occur sequentially as new 

data become available: 

𝑠1, 𝑠2, … , 𝑠𝑖  ⇒  ℎ1, ℎ2, … , ℎ𝑖 (1), 

where 𝑠𝑖 represents the training sample at time step 𝑖 and 

ℎ𝑖 denotes the state of the model after learning from that 

sample. Each training sample is composed of an input–

output pair: 

𝑠𝑖 = (𝑥𝑖 , 𝑦𝑖),  𝑥𝑖 ∈ 𝑅𝑛 ,  𝑦𝑖 ∈ 𝑅𝑚 (2), 

where 𝑥𝑖  stands for the input feature vector with 𝑛 

dimensions and 𝑦𝑖  denotes the corresponding labeled 

output vector with 𝑚 dimensions. The model at time step 

𝑖, denoted by ℎ𝑖, is updated based on the previous model 

state ℎ𝑖−1 and the most recent 𝑝 samples: 

ℎ𝑖 = 𝑓(ℎ𝑖−1, 𝑠𝑖 , 𝑠𝑖−1, … , 𝑠𝑖−𝑝) (3). 

This formulation reflects the online learning 

paradigm where the model incrementally evolves with 

each new data point, arbitrarily incorporating a small 

window of past samples. 

Online learning is particularly useful in dynamic 

environments where data evolve over time and an 

immediate response is required. This method is 

commonly employed in systems that operate 

autonomously, such as in robotics or self-driving 

vehicles [12], as well as in applications where training 

signals are provided progressively through human 

interaction or feedback [13]. Unlike traditional training, 

which assumes a static environment, online learning 

enables systems to remain adaptable and responsive to 

new information as it becomes available. 

Online learning offers a range of advantages, 

particularly in dynamic environments where timely 

adaptation and efficient data handling are essential. One 

of its primary strengths lies in efficient resource 

utilization. Unlike traditional methods that require access 

to the entire dataset, online learning processes incoming 

data incrementally, reducing memory and computational 

demands by only storing and updating a limited subset at 

any given time [14]. 

Another key advantage is real-time adaptation. 

Models can adjust their predictions and internal 

parameters continuously, allowing them to respond 

immediately to changes in the environment or system 

behavior. This feature is especially useful in scenarios 

where system conditions evolve rapidly, such as in 

financial forecasting, industrial automation or non-

 

Figure 1: (a) Comparison between the sampling range 

of the fouling factor (left) and the range of the actual 

process fouling factor (right); (b) Prediction of the 

offline-trained base model (red) versus actual process 

data (blue) from the use case 
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stationary domains like weather prediction, where 

patterns shift over time and data relevance quickly 

reduces [15]. 

However, online learning also presents several 

challenges. A notable limitation is catastrophic 

forgetting, a phenomenon where the model gradually 

loses previously acquired knowledge while adapting to 

new data [16]. This can compromise long-term model 

stability and degrade performance in tasks learned 

earlier. Furthermore, handling concept drift—sudden or 

gradual shifts in the underlying data distribution—

remains a significant challenge, often requiring advanced 

strategies to detect and adapt to such changes effectively. 

Finally, an inherent risk of overfitting in online 

settings must be addressed. Since updates are made 

frequently and often based on small or recent data 

segments, the model may become overly sensitive to 

recent fluctuations, leading to poor generalization. 

Balancing adaptability with robustness is therefore a 

critical aspect in the design of effective online learning 

systems [17]. 

2.3. Compared methodologies 

In real-world applications, online learning provides an 

effective framework for continuously adapting surrogate 

models to reflect the behavior of the actual process. 

However, ensuring long-term reliability requires careful 

design to prevent overfitting to recent data and mitigate 

catastrophic forgetting, where the model loses its ability 

to generalize from past knowledge. 

To evaluate the effectiveness of different online 

learning strategies, this study compares several update 

mechanisms, each with distinct learning dynamics and 

memory usage: 

• Incremental: The model is updated as each new data 

point arrives (Figure 2a), allowing for immediate 

adaptation but with an increased risk of forgetting 

prior knowledge. 

• Mini-Batch: The model accumulates a small number 

of new data points, namely 5, before performing an 

update (Figure 2b). This buffering approach 

smooths out fluctuations and reduces overfitting to 

individual samples. 

• Incremental Replay: This is similar to the 

incremental approach, but a small proportion (1%) 

of the original offline training data is blended into 

each new data point (Figure 2c) in order to preserve 

past knowledge while adapting to new patterns. 

• Cumulative: With each update, the model is trained 

using the complete offline dataset combined with all 

new incoming data (Figure 2d). This strategy 

provides strong memory retention but increases 

computational cost over time. 

• Hybrid: The model updates incrementally with each 

new data point. However, when prediction accuracy 

drops below a practical threshold, the corresponding 

data points are stored and later used in a cumulative 

update after a defined number of samples, in this 

case 5, is collected (Figure 2e). The aim of this 

approach is to balance adaptability against long-term 

stability by selectively reinforcing learning as the 

level of performance declines. The practical 

threshold reflects the practical requirements of 

implementing the surrogate model. It is important to 

recognize that pursuing the highest possible degree 

of accuracy does not always translate into improved 

practical outcomes and may, in fact, increase the risk 

of overfitting. 

2.4. Metrics 

The primary objective of continuously retraining 

surrogate models is to maintain or improve predictive 

accuracy as new operational data become available. 

Ideally, each successive version of a model should 

outperform its predecessor at the next working point. To 

evaluate this progression in real time, a modified version 

of the Mean Absolute Scaled Error (MASE) is 

introduced. 

Unlike the traditional MASE metric—which 

evaluates forecast accuracy by comparing the 

performance of a model to that of a naïve baseline [18]—

the modified MASE proposed here compares the error of 

the newly updated model to that of the previously 

deployed model on the same data point. This adaptation 

provides a direct measure of improvement in 

performance between sequential updates to a model. 

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑀𝐴𝑆𝐸𝑡 =
𝑀𝐴𝐸𝑡

(𝑝)

𝑀𝐴𝐸𝑡
(𝑐)

(4), 

𝑀𝐴𝐸𝑡
(𝑐)

=
1

𝑛
∑|𝑦𝑡

(𝑖)
− 𝑦̂𝑡

(𝑐,𝑖)
|

𝑛

𝑖=1

(5), 

𝑀𝐴𝐸𝑡
(𝑝)

=
1

𝑛
∑|𝑦𝑡

(𝑖)
− 𝑦̂𝑡

(𝑝,𝑖)
|

𝑛

𝑖=1

(6), 

where: 

• 𝑡: the current time step or working point, 

• 𝑛: the number of output variables, 

 

Figure 2: Illustration of compared online learning 

methodologies. 

 



  PALOTAI, KIS, CHOVÁN AND BÁRKÁNYI 

Hungarian Journal of Industry and Chemistry 

40 

• 𝑦𝑡
(𝑖)

: the true value of output 𝑖 at time 𝑡 

• 𝑦̂𝑡
(𝑐,𝑖)

: the prediction of the current model after 

online retraining, 

• 𝑦̂𝑡
(𝑝,𝑖)

 : the prediction of the previously deployed 

model before an update. 

However, this metric only reflects the relative level 

fo improvement between versions of a model in terms of 

the latest sample and does not account for potential 

degradation in the overall accuracy of the model, 

particularly in terms of the original training distribution. 

To address this, each updated model is also evaluated 

with regard to both the original offline and online 

datasets. This dual evaluation ensures that gains in local 

adaptability do not come about at the expense of broader 

model robustness. 

3. Experimental 

3.1. Introduction to the Use Case 

The proposed online learning strategies were evaluated 

using a simplified heat exchanger network model. The 

flowsheet model was developed using Aspen HYSYS 

V14 (Figure 3), moreover, the corresponding input and 

output parameters used for surrogate modeling are 

summarized in Table 1. 

To implement the surrogate model, the neural 

network architecture was chosen due to its flexibility in 

terms of capturing complex nonlinear relationships. 

Specifically, the MLPRegressor from scikit-learn was 

used as it provides native support for incremental 

learning via the partial_fit() method that allows the model 

to be updated progressively with new data without 

reinitializing the learned weights, which is essential in 

online learning scenarios. 

The initial surrogate model was constructed using 

LHS, generating 200 samples from the flowsheet model. 

A feedforward neural network with one hidden layer, 

containing 50 neurons, was trained on this dataset. The 

input sampling range was predefined based on expected 

operational bounds for the system, serving as the baseline 

for both surrogate training and subsequent online 

updates. The baseline model achieved an average R² of 

0.9701 and a Mean Absolute Percentage Error (MAPE) 

of 0.0218 across the output parameters (Figure 4). 

3.2. Test “online” data 

To evaluate the performance of the online learning 

strategies, a test dataset consisting of 730 data points was 

Table 1: Use case model input - output parameters 

Type Description Uom 

Input FEED1 mass flow rate kg/h 

Input FEED1 temperature °C 

Input PROD1 mass flow rate kg/h 

Input PROD1 temperature °C 

Input E1 Fouling factor h°Cm2/kJ 

Input E2 Fouling factor h°Cm2/kJ 

Output PROD1E1IN temperature °C 

Output FEED1E1OUT temperature °C 

Output FEED1OUT temperature °C 

Output PROD1OUT temperature °C 

 

 

Figure 5: Visualization of the generated test “online” 

dataset, showing offline data points on the left and 

sequentially introduced online data on the right. 

 

Figure 4: Scatter plot illustrating the predictive 

accuracy of the base surrogate model in terms of the 

monitored output parameters. 

 

 

Figure 3: Flowsheet representation of the heat 

exchanger network modelled in Aspen HYSYS V14 in 

the use-case scenario. 
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generated. This dataset simulates realistic process 

variability by introducing gradual changes to input 

parameters, added noise and the effects of heat exchanger 

fouling (Figure 5). In contrast, an ideal scenario—where 

the test data is available during offline training and 

combined with the LHS dataset—would allow the model 

to achieve an enhanced level of performance with an 

average R² of 0.988 and a MAPE of 0.0069 (as shown in 

Figure 6). This comparison highlights the potential 

performance gap that online learning aims to bridge by 

progressively incorporating new data into the model. 

3.3. Online learning workflow 

The performance of the base surrogate model was 

evaluated using the test dataset in a sequential manner, 

simulating a real-time operation. New data points were 

introduced one by one, allowing the model to be assessed 

under conditions that reflect actual operational dynamics. 

At each working point, the predictive accuracy of the 

model was recorded both in terms of the new and original 

dataset to evaluate its ability to adapt to changing 

conditions and robustness with regard to retaining 

previously learned knowledge. Based on the selected 

online learning strategy, the model was retrained 

continuously using the incoming data, following the 

specific update procedures described in Section 2.3.  

4. Results and discussion 

The results are evaluated from two perspectives: 

adaptability, which reflects how effectively the model 

adjusts to new operating conditions, and robustness, 

which measures the model's ability to maintain its level 

of performance in terms of the original offline LHS 

dataset. 

4.1. Adaptability 

The adaptability performance of all the evaluated online 

learning strategies assessed using the modified MASE 

metric is presented in Figure 7. In this context, a MASE 

value greater than 1 indicates that the updated model 

performed better than its previous version at a given 

working point with higher values denoting an improved 

level of adaptability to new data. 

All the evaluated strategies demonstrated 

adaptability, consistently achieving MASE values above 

1. This confirms that each method was able to effectively 

learn from incoming data points and improve model 

predictions over time. 

Among the tested approaches, the hybrid and 

incremental learning strategies exhibited the strongest 

level of adaptability, consistently outperforming the 

other methods throughout the dataset. This outcome is in 

line with expectations as Mini-batch learning delays 

updates to models until multiple data points, e.g. 5, are 

collected, which slows the level of responsiveness to 

sudden changes. Cumulative learning, while 

comprehensive, tends to underrepresent the newest data 

during retraining due to the overwhelming influence of 

the older, larger offline dataset. 

4.2. Robustness  

Figure 8 compares the performance of the various online 

learning strategies against both the original surrogate 

model (baseline) and an ideal offline-trained model. This 

 

 

Figure 7: Adaptability performance of online learning 

solutions, measured using the modified MASE metric 

 

Figure 8: Robustness performance of online learning 

solutions with regard to the original LHS data (orange) 

and the level of adaptability to the test "online" data 

(blue) 

 

Figure 6: Comparison between the base surrogate 

model and ideal model prediction accuracy of the test 

dataset 
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comparison is conducted across two datasets: the test 

dataset—representing evolving operational conditions—

and the original LHS dataset used for initial model 

training. The goal is to approach the performance of the 

ideal model with regard to the test data while preserving 

the accuracy of the baseline model in terms of the original 

data, thereby achieving a balance between adaptability 

and robustness. 

The hybrid learning approach emerged as one of the 

most effective strategies. It achieved a high degree of 

accuracy in terms of the test data, comparable to the ideal 

offline model, while also preserving the original 

performance of the surrogate model concerning the LHS 

dataset. This confirms its ability to maintain previously 

acquired knowledge while adapting effectively to new 

conditions. 

The incremental learning strategy also performed 

strongly with regard to the test dataset, reflecting a high 

level of adaptability. However, it suffered a noticeable 

drop in accuracy in terms of the original LHS dataset, 

suggesting signs of catastrophic forgetting. This issue 

was partially mitigated by incorporating a 1% replay of 

the original training data during each update cycle. While 

this replay strategy helped preserve the level of 

performance in terms of the original dataset, it introduced 

a slight reduction in predictive accuracy with regard to 

the test data—highlighting the trade-off between 

retaining old knowledge and adapting to new trends. 

On the other hand, the cumulative learning strategy 

prioritized retention of the original training data and 

achieved similar levels of accuracy in terms of the LHS 

dataset. However, this came at the cost of a lower level 

of performance regarding the test dataset as the large 

volume of historical data overshadowed the influence of 

the newly acquired samples, thereby reducing its ability 

to adapt swiftly to evolving process conditions. 

The Mini-Batch learning method, while showing a 

modest degree of improvement compared to the baseline 

on the test dataset, yielded the lowest level of accuracy 

during the test among the tested approaches. 

Additionally, infrequent updates to this model were 

insufficient to maintain robustness in terms of the 

original dataset, resulting in a suboptimal level of 

performance with regard to both adaptability and 

robustness. 

In summary, the hybrid learning method 

demonstrated the most effective trade-off between 

adaptability and robustness, achieving a strong level of 

accuracy in terms of the test dataset as shown in 

Figure 9 and still a good degree of accuracy with regard 

to the original dataset shown in Figure 8. Incremental 

learning offered a strong level of adaptability but 

required mitigation strategies to preserve older 

knowledge. Cumulative learning ensured robustness but 

limited adaptability, while Mini-Batch learning lagged 

behind due to its delayed response to new data.  

5. Conclusions 

The proposed online learning approaches demonstrate 

significant potential in terms of enhancing the 

adaptability of surrogate models under evolving 

operating conditions. All the investigated methods 

contributed to refining the base surrogate model by 

enabling effective adaptation to new data. A critical 

challenge in online learning is the preservation of 

previously acquired knowledge, which was successfully 

addressed by the hybrid approach, combining the 

strengths of both incremental and cumulative learning 

strategies. Additionally, in terms of incremental learning, 

a small replay, 1% in this use case, of the original training 

data is incorporated during each update cycle, ensuring 

that essential past information is retained while allowing 

the model to adapt to new data. 

Achieving an optimal trade-off between 

adaptability and robustness requires careful calibration of 

the online learning process. In particular, setting a 

realistic accuracy threshold is essential, namely one that 

reflects the practical requirements necessary to 

implement the surrogate model. It is important to 

recognize that pursuing the highest possible level of 

accuracy does not always translate into improved 

practical outcomes and may, in fact, increase the risk of 

overfitting. Therefore, the design of online learning 

strategies should consider both the enhancement of 

performance and long-term stability of the model in order 

to be reliably deployed in real-world industrial systems. 

Additionally, ongoing monitoring of model performance 

is essential to maintain its credibility and ensure it 

continues to meet operational requirements. 

 

Figure 9: Comparison of the accuracy of the base 

model and hybrid learning model with regard to the 

online test data 
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