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In the process industry, flowsheet models are commonly used to create digital representations of real processes.
While these models provide detailed simulations, they often struggle with computational demands in dynamic
operating environments. Surrogate models offer a more efficient alternative, but their level of accuracy must be
continuously aligned with actual system behavior. This paper presents an MLOps-aligned online surrogate
calibration method that maintains and improves surrogate model accuracy by dynamically incorporating localized
operational data. Unlike traditional global surrogates trained on static datasets, the proposed approach adapts to
changing conditions while preserving previously learned knowledge, effectively addressing the challenge of
catastrophic forgetting. Demonstrated on a heat exchanger network, the method significantly improves prediction
accuracy in previously unmodeled operating regimes, enhancing the robustness and reliability of digital twins in

industrial applications.
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1. Introduction

Simulation and optimization are essential in the process
industry to achieve operational efficiency and ensure
system safety [l]. Traditionally, detailed process
simulations are carried out using high-fidelity flowsheet
models, which support in-depth analysis, scenario
evaluation, performance enhancement and equipment
condition monitoring [2]. These models, grounded in
physical laws and thermodynamic relationships, serve as
reliable tools for data-driven decision-making. However,
maintaining their accuracy over time can be challenging,
especially when integrated into real-time applications
where the wunderlying physical systems evolve
continuously [3].

To overcome the computational complexity of
flowsheet simulations, surrogate models—also referred
to as reduced-order or metamodels—have emerged as a
practical alternative [4]. These models emulate the
behavior of complex simulations using simplified
mathematical frameworks, thereby enabling faster
analysis and optimization. Constructing an effective
surrogate model typically requires sampling data from
the original high-fidelity flowsheet model. Two common
approaches are one-shot sampling and adaptive sampling
[5]. One-shot techniques, such as Latin Hypercube
Sampling (LHS), generate statistically distributed
samples across the design space in a single step [6]. In
contrast, adaptive sampling strategies iteratively select
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new data points to enhance the precision of a model with
fewer evaluations [7].

While both sampling strategies are efficient with
regard to initial surrogate development [4], they may not
ensure a sufficient level of accuracy during its actual
operation. The real system may operate in regions that
were underrepresented or completely absent in the initial
sampling, especially when the operating range of a
derived parameter is unknown beforehand. As a result,
surrogates trained offline may underperform in dynamic
or previously unseen regimes.

To address this gap, online learning offers a way to
refine surrogate models during their implementation by
incorporating real-time data. This continuous adaptation
enables the model to respond to new operational
scenarios and maintain predictive accuracy. This study
proposes and evaluates an online surrogate learning
framework that iteratively updates the model based on
observed process data. The goal is to maintain a high
level of accuracy across both well-known and emerging
operating conditions, enhancing the robustness and
reliability of the surrogate in practical industrial settings.

2. Methodology

In practical applications, surrogate models are used to
replace high-fidelity simulations for the purpose of
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reducing computational load. In this research context, the
role of a surrogate model is to support the calibration of
the flowsheet model by estimating calibration factors that
align the simulation with the real process [8]. To
demonstrate the effectiveness of online learning
approaches, this study focuses on retraining the surrogate
model. In simple terms, the flowsheet model is treated as
a stand-in for the real system, generating data that the
surrogate is expected to replicate. It is assumed that the
flowsheet model accurately represents the real process at
all operating points and the surrogate model learns from
this data accordingly.

2.1. Problem statement

LHS is a widely used one-shot technique for surrogate-
model training due to its ability to maintain generality as
dimensionality increases, while ensuring well-distributed
sampling across the input space [9]. This method requires
predefined minimum and maximum ranges for each input
parameter, typically based on the normal operating
window of the real process. However, defining
appropriate ranges becomes challenging for derived
parameters—such as fouling factors in heat
exchangers—when prior knowledge is lacking. As
illustrated in Figure 1, if the surrogate model is trained
on hypothetical parameter ranges that differ significantly
from the actual distribution observed while in operation,
its predictive accuracy can reduce.

Ideally, surrogate-model training would be based
on the true parameter ranges relevant to the system, but
this information is often unavailable during offline model
development, moreover, only becomes accessible once
the model is deployed and real operational data are
collected.

2.2. Introduction to online learning

Most conventional machine learning approaches operate
under the classical paradigm, where the complete dataset
is available prior to training. These models are built on
the assumption that the data distribution remains static
and the underlying structure does not change over time
[10]. When new data become available, the typical
solution is to retrain the entire model from scratch, which
can be computationally intensive and inefficient.

In contrast, online learning offers a framework for
continuous model adaptation in response to a stream of
incoming data [11]. This approach processes data
incrementally, updating the model one sample at a time,
facilitating model training to occur sequentially as new
data become available:

=  hyhy, Nk (D),

where s; represents the training sample at time step i and
h; denotes the state of the model after learning from that
sample. Each training sample is composed of an input—
output pair:
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Figure 1: (a) Comparison between the sampling range
of the fouling factor (left) and the range of the actual
process fouling factor (right); (b) Prediction of the
offline-trained base model (red) versus actual process
data (blue) from the use case

where x; stands for the input feature vector with n
dimensions and y; denotes the corresponding labeled
output vector with m dimensions. The model at time step
i, denoted by h;, is updated based on the previous model
state h;_, and the most recent p samples:

hi = f(Riz1, St Sic s s Sicp) 3).

This formulation reflects the online learning
paradigm where the model incrementally evolves with
each new data point, arbitrarily incorporating a small
window of past samples.

Online learning is particularly useful in dynamic
environments where data evolve over time and an
immediate response is required. This method is
commonly employed in systems that operate
autonomously, such as in robotics or self-driving
vehicles [12], as well as in applications where training
signals are provided progressively through human
interaction or feedback [13]. Unlike traditional training,
which assumes a static environment, online learning
enables systems to remain adaptable and responsive to
new information as it becomes available.

Online learning offers a range of advantages,
particularly in dynamic environments where timely
adaptation and efficient data handling are essential. One
of its primary strengths lies in efficient resource
utilization. Unlike traditional methods that require access
to the entire dataset, online learning processes incoming
data incrementally, reducing memory and computational
demands by only storing and updating a limited subset at
any given time [14].

Another key advantage is real-time adaptation.
Models can adjust their predictions and internal
parameters continuously, allowing them to respond
immediately to changes in the environment or system
behavior. This feature is especially useful in scenarios
where system conditions evolve rapidly, such as in
financial forecasting, industrial automation or non-
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stationary domains like weather prediction, where
patterns shift over time and data relevance quickly
reduces [15].

However, online learning also presents several
challenges. A notable limitation is catastrophic
forgetting, a phenomenon where the model gradually
loses previously acquired knowledge while adapting to
new data [16]. This can compromise long-term model
stability and degrade performance in tasks learned
earlier. Furthermore, handling concept drift—sudden or
gradual shifts in the underlying data distribution—
remains a significant challenge, often requiring advanced
strategies to detect and adapt to such changes effectively.

Finally, an inherent risk of overfitting in online
settings must be addressed. Since updates are made
frequently and often based on small or recent data
segments, the model may become overly sensitive to
recent fluctuations, leading to poor generalization.
Balancing adaptability with robustness is therefore a
critical aspect in the design of effective online learning
systems [17].

2.3. Compared methodologies

In real-world applications, online learning provides an

effective framework for continuously adapting surrogate

models to reflect the behavior of the actual process.

However, ensuring long-term reliability requires careful

design to prevent overfitting to recent data and mitigate

catastrophic forgetting, where the model loses its ability
to generalize from past knowledge.

To evaluate the effectiveness of different online
learning strategies, this study compares several update
mechanisms, each with distinct learning dynamics and
memory usage:

e Incremental: The model is updated as each new data
point arrives (Figure 2a), allowing for immediate
adaptation but with an increased risk of forgetting
prior knowledge.

e  Mini-Batch: The model accumulates a small number
of new data points, namely 5, before performing an
update (Figure 2b). This buffering approach
smooths out fluctuations and reduces overfitting to
individual samples.

e Incremental Replay: This is similar to the
incremental approach, but a small proportion (1%)
of the original offline training data is blended into
each new data point (Figure 2c) in order to preserve
past knowledge while adapting to new patterns.

e Cumulative: With each update, the model is trained
using the complete offline dataset combined with all
new incoming data (Figure 2d). This strategy
provides strong memory retention but increases
computational cost over time.

e  Hybrid: The model updates incrementally with each
new data point. However, when prediction accuracy
drops below a practical threshold, the corresponding
data points are stored and later used in a cumulative
update after a defined number of samples, in this
case 5, is collected (Figure 2e). The aim of this
approach is to balance adaptability against long-term
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Figure 2: Tllustration of compared online learning
methodologies.

stability by selectively reinforcing learning as the
level of performance declines. The practical
threshold reflects the practical requirements of
implementing the surrogate model. It is important to
recognize that pursuing the highest possible degree
of accuracy does not always translate into improved
practical outcomes and mayi, in fact, increase the risk
of overfitting.

2.4. Metrics

The primary objective of continuously retraining
surrogate models is to maintain or improve predictive
accuracy as new operational data become available.
Ideally, each successive version of a model should
outperform its predecessor at the next working point. To
evaluate this progression in real time, a modified version
of the Mean Absolute Scaled Error (MASE) is
introduced.

Unlike the traditional MASE metric—which
evaluates forecast accuracy by comparing the
performance of a model to that of a naive baseline [18]—
the modified MASE proposed here compares the error of
the newly updated model to that of the previously
deployed model on the same data point. This adaptation

provides a direct measure of improvement in
performance between sequential updates to a model.
Modified MASE, = 7?@ 4),
MAE]
1 n
MAES == |y — 3| ),
i=1
1 n
MAEt(p) — EZb’L‘(l) _ S\It(p-’-)| (6),
i=1

where:
e t: the current time step or working point,
e n: the number of output variables,
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Table 1: Use case model input - output parameters

Type Description Uom
Input FEEDI mass flow rate kg/h
Input FEEDI temperature °C
Input PRODI1 mass flow rate kg/h
Input PRODI temperature °C
Input E1 Fouling factor h°Cm?%/kJ
Input E2 Fouling factor h°Cm?%/kJ
Output PRODIEIIN temperature °C
Output FEEDIE1OUT temperature °C
Output FEED1OUT temperature °C
Output PROD10OUT temperature °C

. yt(i): the true value of output { at time ¢

. ?fc'i): the prediction of the current model after

online retraining,

. }7t(p'i) : the prediction of the previously deployed

model before an update.

However, this metric only reflects the relative level
fo improvement between versions of a model in terms of
the latest sample and does not account for potential
degradation in the overall accuracy of the model,
particularly in terms of the original training distribution.
To address this, each updated model is also evaluated
with regard to both the original offline and online
datasets. This dual evaluation ensures that gains in local
adaptability do not come about at the expense of broader
model robustness.

3. Experimental

3.1. Introduction to the Use Case

The proposed online learning strategies were evaluated
using a simplified heat exchanger network model. The
flowsheet model was developed using Aspen HYSYS
V14 (Figure 3), moreover, the corresponding input and
output parameters used for surrogate modeling are
summarized in Table 1.

To implement the surrogate model, the neural
network architecture was chosen due to its flexibility in
terms of capturing complex nonlinear relationships.
Specifically, the MLPRegressor from scikit-learn was
used as it provides native support for incremental
learning via the partial fit() method that allows the model
to be updated progressively with new data without
reinitializing the learned weights, which is essential in
online learning scenarios.

The initial surrogate model was constructed using
LHS, generating 200 samples from the flowsheet model.
A feedforward neural network with one hidden layer,
containing 50 neurons, was trained on this dataset. The
input sampling range was predefined based on expected
operational bounds for the system, serving as the baseline
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Figure 3: Flowsheet representation of the heat
exchanger network modelled in Aspen HYSYS V14 in
the use-case scenario.
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Figure 4: Scatter plot illustrating the predictive

accuracy of the base surrogate model in terms of the

monitored output parameters.
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Figure 5: Visualization of the generated test “online”
dataset, showing offline data points on the left and
sequentially introduced online data on the right.

for both surrogate training and subsequent online
updates. The baseline model achieved an average R? of
0.9701 and a Mean Absolute Percentage Error (MAPE)
of 0.0218 across the output parameters (Figure 4).

3.2. Test “online” data

To evaluate the performance of the online learning
strategies, a test dataset consisting of 730 data points was
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generated. This dataset simulates realistic process
variability by introducing gradual changes to input
parameters, added noise and the effects of heat exchanger
fouling (Figure 5). In contrast, an ideal scenario—where
the test data is available during offline training and
combined with the LHS dataset—would allow the model
to achieve an enhanced level of performance with an
average R? of 0.988 and a MAPE of 0.0069 (as shown in
Figure 6). This comparison highlights the potential
performance gap that online learning aims to bridge by
progressively incorporating new data into the model.

3.3. Online learning workflow

The performance of the base surrogate model was
evaluated using the test dataset in a sequential manner,
simulating a real-time operation. New data points were
introduced one by one, allowing the model to be assessed
under conditions that reflect actual operational dynamics.
At each working point, the predictive accuracy of the
model was recorded both in terms of the new and original
dataset to evaluate its ability to adapt to changing
conditions and robustness with regard to retaining
previously learned knowledge. Based on the selected
online learning strategy, the model was retrained
continuously using the incoming data, following the
specific update procedures described in Section 2.3.

4. Results and discussion

The results are evaluated from two perspectives:
adaptability, which reflects how effectively the model
adjusts to new operating conditions, and robustness,
which measures the model's ability to maintain its level
of performance in terms of the original offline LHS
dataset.

4.1. Adaptability

The adaptability performance of all the evaluated online
learning strategies assessed using the modified MASE
metric is presented in Figure 7. In this context, a MASE
value greater than 1 indicates that the updated model
performed better than its previous version at a given
working point with higher values denoting an improved
level of adaptability to new data.

All the evaluated strategies demonstrated
adaptability, consistently achieving MASE values above
1. This confirms that each method was able to effectively
learn from incoming data points and improve model
predictions over time.

Among the tested approaches, the hybrid and
incremental learning strategies exhibited the strongest
level of adaptability, consistently outperforming the
other methods throughout the dataset. This outcome is in
line with expectations as Mini-batch learning delays
updates to models until multiple data points, e.g. 5, are
collected, which slows the level of responsiveness to
sudden changes. Cumulative learning, while
comprehensive, tends to underrepresent the newest data
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Figure 6: Comparison between the base surrogate
model and ideal model prediction accuracy of the test
dataset
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Figure 8: Robustness performance of online learning
solutions with regard to the original LHS data (orange)
and the level of adaptability to the test "online" data
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during retraining due to the overwhelming influence of
the older, larger offline dataset.

4.2. Robustness

Figure 8 compares the performance of the various online
learning strategies against both the original surrogate
model (baseline) and an ideal offline-trained model. This
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comparison is conducted across two datasets: the test
dataset—representing evolving operational conditions—
and the original LHS dataset used for initial model
training. The goal is to approach the performance of the
ideal model with regard to the test data while preserving
the accuracy of the baseline model in terms of the original
data, thereby achieving a balance between adaptability
and robustness.

The hybrid learning approach emerged as one of the
most effective strategies. It achieved a high degree of
accuracy in terms of the test data, comparable to the ideal
offline model, while also preserving the original
performance of the surrogate model concerning the LHS
dataset. This confirms its ability to maintain previously
acquired knowledge while adapting effectively to new
conditions.

The incremental learning strategy also performed
strongly with regard to the test dataset, reflecting a high
level of adaptability. However, it suffered a noticeable
drop in accuracy in terms of the original LHS dataset,
suggesting signs of catastrophic forgetting. This issue
was partially mitigated by incorporating a 1% replay of
the original training data during each update cycle. While
this replay strategy helped preserve the level of
performance in terms of the original dataset, it introduced
a slight reduction in predictive accuracy with regard to
the test data—highlighting the trade-off between
retaining old knowledge and adapting to new trends.

On the other hand, the cumulative learning strategy
prioritized retention of the original training data and
achieved similar levels of accuracy in terms of the LHS
dataset. However, this came at the cost of a lower level
of performance regarding the test dataset as the large
volume of historical data overshadowed the influence of
the newly acquired samples, thereby reducing its ability
to adapt swiftly to evolving process conditions.

The Mini-Batch learning method, while showing a
modest degree of improvement compared to the baseline
on the test dataset, yielded the lowest level of accuracy
during the test among the tested approaches.
Additionally, infrequent updates to this model were
insufficient to maintain robustness in terms of the
original dataset, resulting in a suboptimal level of
performance with regard to both adaptability and
robustness.

In summary, the hybrid learning method
demonstrated the most effective trade-off between
adaptability and robustness, achieving a strong level of
accuracy in terms of the test dataset as shown in
Figure 9 and still a good degree of accuracy with regard
to the original dataset shown in Figure 8. Incremental
learning offered a strong level of adaptability but
required mitigation strategies to preserve older
knowledge. Cumulative learning ensured robustness but
limited adaptability, while Mini-Batch learning lagged
behind due to its delayed response to new data.
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Figure 9: Comparison of the accuracy of the base
model and hybrid learning model with regard to the
online test data

5. Conclusions

The proposed online learning approaches demonstrate
significant potential in terms of enhancing the
adaptability of surrogate models under evolving
operating conditions. All the investigated methods
contributed to refining the base surrogate model by
enabling effective adaptation to new data. A critical
challenge in online learning is the preservation of
previously acquired knowledge, which was successfully
addressed by the hybrid approach, combining the
strengths of both incremental and cumulative learning
strategies. Additionally, in terms of incremental learning,
a small replay, 1% in this use case, of the original training
data is incorporated during each update cycle, ensuring
that essential past information is retained while allowing
the model to adapt to new data.

Achieving an optimal trade-off between
adaptability and robustness requires careful calibration of
the online learning process. In particular, setting a
realistic accuracy threshold is essential, namely one that
reflects the practical requirements necessary to
implement the surrogate model. It is important to
recognize that pursuing the highest possible level of
accuracy does not always translate into improved
practical outcomes and may, in fact, increase the risk of
overfitting. Therefore, the design of online learning
strategies should consider both the enhancement of
performance and long-term stability of the model in order
to be reliably deployed in real-world industrial systems.
Additionally, ongoing monitoring of model performance
is essential to maintain its credibility and ensure it
continues to meet operational requirements.
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