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Experiments play a crucial role in additive manufacturing to help researchers develop new materials with 
enhanced properties or in several types of process optimization tasks. Design of Experiments (DoE) is a valuable 
tool that is efficient, statistically rigorous and offers a systematic approach to experimentation. In this article, 
several types of DoE methods such as one-factor-at-a-time (OFAT), full and fractional factorial designs, Taguchi, 
response surface methodology (RSM) and descriptive screening designs (DSD) are briefly described in addition 
to some single- and multi-objective optimization methods. The optimization methods apply utility theory (UT), 
Taguchi and desirability optimization as well as some non-conventional, artificial intelligence-based multi-
objective optimization methods illustrated by examples from the field of additive manufacturing. In the second 
part, the potential factors and response variables are reviewed during the investigation of the seven main 
categories of additive manufacturing, namely binder jetting (BJT), directed energy deposition (DED), material 
extrusion (MEX), material jetting (MJT), powder bed fusion (PBF), sheet lamination (SHL) and vat 
photopolymerization (VPP). 
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1. Introduction 

In manufacturing technology, several methods are 

applied to prepare prototypes, whether for low-volume or 

mass production. One of the leading modern 

technologies for machining parts and products is additive 

manufacturing (AM) whereby objects are built layer by 

layer, while in conventional manufacturing (CM), the 

process typically involves subtractive methods where a 

material is removed from a bulk structure. 

There are some advantages of AM as opposed to 

CM such as design flexibility, complex geometries, the 

generation of less waste during the manufacturing 

process and its environmentally-friendly nature. On the 

other hand, CM is more cost-effective regarding mass 

production. The production speed is significantly faster, 

a wider range of materials are used, often a better surface 

finish is achieved and tighter tolerances. By combining 

AM and CM processes, industrial manufacturing 

processes are optimized. 

According to a standard [1], AM is defined as a 

process that builds parts by joining materials layer by 

layer using 3D model data. The standard defined seven 

process categories for AM are as follows: binder jetting 

(BJT), directed energy deposition (DED), material 
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extrusion (MEX), material jetting (MJT), powder bed 

fusion (PBF), sheet lamination (SHL) and vat 

photopolymerization (VPP). 

The qualification of technological processes and 

components is crucial when describing the behaviour of 

examined procedures. The performed experiments and 

their subsequent evaluation play crucial roles in scientific 

methods, research and decision-making in the 

manufacturing industry. Several types of design of 

experiments (DoE) exist, starting from the simplest one-

factor-at-a-time (OFAT) method up to the I-optimized 

response surface methods (RSM). The evaluation of the 

measured data could be followed by visual interpretation, 

statistical tests, regression and optimization. 

In this article, the experimental design methods as 

well as their evaluation and optimization are reviewed 

before being explained within the field of AM processes 

(Chapter 2). The purpose of this work is to clarify the 

steps of evaluation of different procedures as well as 

explain the differences between the used DoE methods 

and optimization approximations. Choosing appropriate 

input or control parameters and response variable(s) for 

the investigation of a certain quality is particularly 

difficult when experimenting. In Chapter 3, the possible 

factors concerning the seven different AM processes are 

https://doi.org/10.33927/hjic-2024-08
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collected separately and the frequently used response 

variables illustrated by examples from recent AM 

research. The abbreviations used in this article are 

presented in Table 1. 

2. Experiments, modelling and 
optimization 

Investigations in the field of AM consist of several 

important parts such as experimentation, designing an 

appropriate part and mathematical evaluation of the data. 

The purpose of AM research could be to improve the 

quality of a process by carrying out experimental work. 

Numerous parameters can affect the quality of an AM 

process. By applying a DoE approach, the expense and 

duration of experimental work could be decreased 

significantly. Initially, the main goal of parameter 

screening, that is, describing the process mathematically, 

optimizing factors or process robustness, must be defined 

[2]. 

The flowchart whereby the AM process is examined 

is shown in Figure 1. The Design of Experiments - 

Experimentation - Evaluation of Data - Optimization 

(DoE-Exp-Eval-Opt) process can reveal the main 

elements of the work and provide an opportunity to 

clarify the main purpose of the investigations or research. 

The first main step of the research is to design the 

experimental work. It can be stated that "all experiments 

are designed experiments, it is just that some are poorly 

designed, and some are well-designed" [2],[3]. To 

investigate the behaviour of a certain process, the effects 

of the so-called input parameters as well as the 

controllable and uncontrollable factors influencing the 

output of the process must be examined. It is important 

to define all the response variables and factors as well as 

their levels carefully before performing experiments. The 

different experimental designs are described in 

Chapter 2.1. 

The second main step when examining AM is 

experimentation itself. The selection and creation of the 

design [4]-[6] is followed by the AM of the specimen. 

Response parameters should be measured properly. The 

quality and validity of the data play important roles 

during AM. Some examples from the metrology of AM 

parts are presented [7]-[11]. 

The next step is the evaluation of data (Figure 1). 

Data visualization helps scientists understand and 

interpret information more effectively [12],[13]. 

Statistical analysis of the data allows the effects of the 

factors on the experimental results to be investigated and 

characterized. Methods are available from the simplest 

two-sample hypothesis tests up to the more advanced and 

complex hypothesis tests. In Chapter 2.2, some 

frequently used tests to evaluate statistical data are 

shown. If the AM process must be described by 

mathematical methods, linear or nonlinear regression 

analysis might be most suitable. 

Optimization is the last optional step of the DoE-

Exp-Eval-Opt process when examining AM. Several 

methods are found in the literature for single or multi-

response optimization of manufacturing processes, a few 

of which are detailed in Chapter 2.3. Within the 

following subchapters, the citations from a particular 

DoE method concern the practice of AM. The DoE 

methods according to AM technologies are presented in 

Chapter 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Table 1: Abbreviations 

 

 

Figure 1: Main steps during AM examinations - the DoE-Exp-Eval-Opt process 
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2.1. Experimental designs 

In this chapter, the most commonly used methods for the 

experimental design of AM technologies are described. 

Researchers often use this selection of methods to tailor 

their experimental settings, even if further mathematical 

equations and the optimization of a process are 

unnecessary. Five main categories of the DoE are briefly 

defined. The mathematical modelling of these designs is 

found in Chapter 2.2. 

One-factor-at-a-time (OFAT) 

One experimental strategy that is extensively applied is 

the OFAT approach [2]. The OFAT method consists of 

selecting a starting point, or baseline set of levels, for 

each factor before successively varying each factor over 

a particular range while keeping the other factors 

constant at their baseline levels [14],[15]. Once all the 

tests have been performed, a series of graphs are usually 

constructed showing how the response variable is 

affected by varying each factor separately while all the 

other factors are kept constant. The purpose of this 

approach is to investigate the impact of individual factors 

on a process without having to consider potential 

interactions between factors. 

The OFAT method is suggested to be used during 

pre-experiments. Pre-experiments can play an important 

role in making sure that the experimental design is 

correct and effective before carrying out the actual 

research or experiment. These can help reduce the risk of 

errors and increase the success of the research project or 

experiment. Since the main experiment usually involves 

several control parameters for examinations, the correct 

experimental strategy is to conduct a factorial 

experiment. 

Factorial design 

During factorial designs, several factors are varied 

simultaneously instead of one at a time, that is, 3 control 

parameters, namely 3 layer thicknesses, 2 drying times 

and 4 baseline temperatures. If all possible combinations 

are examined, then the factorial design consists of 3 x 2 

x 4 = 24 experimental runs. This type of factorial design 

is referred to as the full factorial design [16]-[20] 

whereby all combinations of each factor at all levels are 

tested, thereby including the examination of all possible 

interactions as well as main effects and higher-order 

interactions. If all the factors have 2 levels, the usual 

notation for the n-factor full factorial design is 2n, which 

is equal to the number of experimental runs. If each factor 

has 3 levels, then 3n experimental runs are performed. By 

increasing the number of levels of the control parameters, 

the number of experimental runs required will rise 

exponentially. 

One type of factorial design which allows 

researchers to study the main effects and some desired 

interaction effects over a minimum number of trials or 

experimental runs is called a fractional factorial design. 

In the case of fractional factorial designs, which are 

orthogonal arrays where the settings for the independent 

variables are orthogonal to one another so it is possible 

to estimate them independently, a fraction (e.g. 1/2, 1/4, 

1/8) of the experimental runs can be conducted. Two-

level fractional factorial designs are expressed using the 

notation 2(k−p) where k denotes the number of variables 

(factors) investigated and p describes the size of the 

fraction of the full factorial search space used [2]. 

The main purpose of fractional factorial designs is 

to decide which control parameters or factors have the 

most influence on the response variable(s) when a 

relatively small number of experiments are conducted. 

Therefore, experimental screening designs are used when 

the number of factors is larger than 6 [21]-[23]. A 

sequential experimentation strategy could be applied 

when fractional factorial designs are used correctly 

[2,14,24]. Screening designs consist of several types such 

as Plackett-Burman [25],[26] and Latin square designs 

[27] or Taguchi methods. 

Taguchi methods 

Taguchi has developed experimental designs using 

orthogonal arrays (OA) [28] where the factors can have 

2, 3, 4 or more levels and the main effects can be 

evaluated. This form of experimental designs is common 

and popular among researchers who suppose that the 

effect of parameters on the response variable is 

approximately linear. One main advantage of Taguchi 

methods is that several levels, that is, more than 2, of a 

certain parameter can be investigated, moreover, a 

smaller number of experiments have to be performed 

compared to in full factorial experiments (Table 2). A 

huge number of Taguchi OAs are found in the field of 

AM from various areas [29]-[35]. 

Response surface methodology (RSM) 

RSM is a collection of mathematical and statistical 

techniques to model and analyse problems in which a 

response of interest is influenced by several variables and 

the objective is to optimize this response. The response 

surface is usually represented by graphs on a surface or 

contour plot. RSM consists of two different types, 

namely Central Composite Designs (CCD) and Box-

Behnken Designs (BBD). As an example, three factorial 

experimental designs along with their factor levels are 

presented in Table 3. RSM CCDs involve a combination 

of factorial designs and axial points. The number of 

  

Table 2: Comparison of the number of experiments 

conducted in full factorial designs and Taguchi 

methods 

Number of 

Factors 

Levels of 

Factors 

Taguchi 

OA 

No. of exp. 

Taguchi 

No. of exp. 
Full 

factorial 

3 2 L4 (23) 4 8 

7 2 L8 (27) 8 128 

4 3 L9 (34) 9 81 

11 2 L12 (211) 11 2048 

1;7 2;3 L18 (21·37) 18 4374 
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levels for each factor can vary depending on the specific 

experimental design. CCDs are flexible and enable the 

number of levels and the ranges for each factor to be 

chosen based on specific requirements and knowledge of 

the process under investigation. Levels should be chosen 

carefully to accurately model and optimize the response 

variable according to the available data points. CCD is an 

extension of the factorial design, and includes both 

factorial points and axial points. The axial points are 

placed at a distance α from the centre. A special type of 

CCD is face-centred central composite design (FC CCD), 

which is particularly useful when the centre point, that is, 

the point at the centre of the design space, is either 

unnecessary or infeasible for experimentation. In the case 

of FC CCD α = 1, only 3 levels are found for each factor 

compared to 5 in CCD [36]. 

RSM BBD is an independent quadratic design since 

an embedded factorial or fractional factorial design is not 

included. Three levels of each factor are found, while the 

design consists of a combination of low, high and centre 

levels for each factor [2]. BBDs typically require fewer 

experiments compared to CCDs, making the former more 

efficient when the budget or resources are limited. CCD 

is often considered more efficient in terms of modelling 

complex response surfaces when the purpose of the 

experiments is to develop a regression model for the data 

(see the examples in Tables 4–7 presented later in this 

article). 

Despite the importance of CCDs and BBDs, 

researchers sometimes cannot afford the required number 

of experimental runs. Therefore, optimal designs have 

been developed that follow the so-called alphabetic 

optimality criteria [36], some of which focus on 

accurately estimating model parameters while others on 

predicting the design region well. One type of optimal 

design known as I-optimal design is found from the field 

of additive manufacturing [37],[38], which seeks to 

optimise prediction variance. 

Definitive screening designs (DSD) 

Response surface methods can describe the relationship 

between the factors and the response variable if more 

than two levels for each factor must be chosen. When 

2-3 factors are considered, approximately 20 

experimental runs are conducted. In the case of 6 factors, 

a full RSM CCD consists of 90 experimental runs, while 

when 10 factors are examined, a RSM BBD contains 170 

runs. In order to reduce the number of experimental runs 

but continue to benefit from the advantages of RSM, a 

new three-level screening design known as definitive 

screening design (DSD) was developed whereby the 

number of experimental runs is one more than twice the 

number of factors [39]. In the case of 6 factors, the 

number of experimental runs is 13, while when 10 factors 

are selected, 21 runs are performed, which is far less than 

in RSM designs. RSM and DSD for 8 factors and one 

response variable for MEX-printed PLA parts were 

compared [38]. DSD was found to be more economical 

than RSM due to the reduced number of experimental 

runs. 17 experimental runs were planned based on a DSD 

compared to 55 on a RSM design. Several DSD 

experimental designs are found in the literature [40]-[43]. 

2.2. Data evaluation 

After conducting the designed experiments, data must be 

statistically evaluated. Firstly, the results must be 

visualized by groups in graphs such as individual value, 

box and violin plots or histograms. Visualizing data in 

groups or categories is a common approach to gain 

insights into how data is distributed as well as identify 

patterns and differences between these groups. The 

graphs produced enable accurate hypotheses to be 

suggested during the following statistical tests. 

During the statistical tests following a DoE, the 

following null hypothesis is frequently used, that is, there 

is no significant difference between the means of the 

groups compared. If two groups exist, then the two-

sample t-test is the most appropriate method. If more than 

two groups are found for one factor and more than two 

factors are involved, then the common test is analysis of 

variance (ANOVA), which helps determine whether the 

variation between the means of groups is statistically 

significant or can be attributed to random sampling 

variation. 

If the DoE consists of more factors and the types of 

variables are different from numerical ones, e.g. they are 

categorical variables, the general linear model (GLM) is 

Table 3: The factor levels in coded form of a CCD, face-centred CCD and Box-Behnken design for three factors 
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a more general framework that can handle various types 

of dependent variables by taking into account a broader 

range of data types and statistical models in addition to 

the comparison of means [2]. 

Regression 

Previously mentioned tests of significance comparing 

means could be sufficient for researchers. Sometimes the 

purpose of research is not only to define the significance 

of a certain factor or parameter but to describe the process 

mathematically and accurately by regression equations. 

Although several types of regression equations or models 

exist, in this paper, statistical regression approximations 

are addressed [2]. 

The simplest regression model which can be fitted 

to three-factor experimental designs is a multiple linear 

regression model with only main effects: 𝑦 = 𝛽0 + 𝛽1 ∙ 𝑥1 + 𝛽2 ∙ 𝑥2 + 𝛽3 ∙ 𝑥3 + 𝜀 (1) 

where 𝑦 denotes the response variable, βi represents the 

regression coefficients, xi are the values of th ith variable 

and ε stands for the random error term. While statistically 

evaluating the screening of two-level designs and 

Taguchi methods, this type of equation with only main 

effects could be developed [32],[44]. The minimum 

number of experimental runs is the number of factors 

plus one. 

If the DoE contains more experimental runs than the 

minimum number required, the interaction between the 

factors can be estimated. In the case of a full factorial 23 

DoE, the following multiple linear regression can be 

estimated: 𝑦 = 𝛽0 + 𝛽1 ∙ 𝑥1 + 𝛽2 ∙ 𝑥2 + 𝛽3 ∙ 𝑥3 +𝛽12 ∙ 𝑥1 ∙ 𝑥2 + 𝛽13 ∙ 𝑥1 ∙ 𝑥3 + 𝛽23 ∙ 𝑥2 ∙ 𝑥3 +𝛽123 ∙ 𝑥1 ∙ 𝑥2 ∙ 𝑥3 + 𝜀 (2) 

where 8 βi should be estimated so a minimum of 8 

experimental runs must be conducted. Within this form 

of multiple linear regression, there are 3 main effects (x1, 

x2, x3), 3 interactions between two factors (x1·x2, x2·x3, 

x1·x3) and 1 interaction between three factors. (x1·x2·x3). 

This type of regression was applied in a wire-based 

electron beam additive manufacturing process [45]. 

If the DoE contains a factor with more than two 

levels, then quadratic effects of that factor could be 

estimated besides the main effects and interactions. The 

following equation is an example of a factorial design 

consisting of at least 3 levels and at least 10 experimental 

runs: 𝑦 = 𝛽0 + 𝛽1 ⋅ 𝑥1 +  𝛽2 ⋅ 𝑥2 + 𝛽3 ⋅ 𝑥3 + 𝛽12 ⋅ 𝑥1 ⋅ 𝑥2 + 𝛽13 ⋅ 𝑥1 ⋅ 𝑥3 + 𝛽23 ⋅ 𝑥2 ⋅ 𝑥3 + 𝛽11 ⋅ 𝑥12 + 𝛽22 ⋅ 𝑥22 + 𝛽33 ⋅ 𝑥32 +  𝜀  (3) 

This latest type of regression models has been 

addressed in the literature [46],[47]. 

These are the most common types of statistical 

regression model used when studying AM technologies. 

Besides these models, some are emerging in artificial 

neural network (ANN) models to determine the 

relationship between the input and output parameters of 

AM processes. Research articles have been published 

where the modelling capability of RSM and ANN 

methods is compared or combined to describe AM 

processes [29,48,49]. 

2.3. Optimization 

The regression model parameters can be estimated and 

equations visualized graphically as a response surface. 

Having determined the equation, the minimum, 

maximum or target value of a certain response variable 

can be calculated as an optimization goal. This type of 

optimization is referred to as numerical and denoted in 

Tables 4–7. 

Based on the purpose of the research, typically two 

or more response variables are investigated in a designed 

experiment. Two types of optimizations related to the 

handling of response variables are found, namely single-

objective and multi-objective optimizations. If the single-

objective optimization is chosen, the calculation is easier, 

while the multi-objective optimization can use even 

neural network for problem-solving. 

The use of utility theory (UT) simplifies multi-

objective optimization into single-objective 

optimization. In this theory, a utility, that is, a value of 

individual response factors (y1, y2, ..., yn), is calculated 

and finally a combined value calculated by using the 

relations. If Xi measures the effectiveness of an attribute 

(characteristic) i and n attributes evaluate the outcome 

space, the overall utility function is a linear sum of 

individual utilities which can be adjusted by providing a 

weight, transforming the overall utility function into: 𝑈(𝑋1, 𝑋2, … , 𝑋𝑛) = ∑ 𝑊𝑖𝑈𝑖(𝑋𝑖)𝑛𝑖=1  (4) 

where Ui(Xi) denotes the utility of the ith attribute, Wi 

stands for the weight assigned to the attribute i and the 

sum of the weights for all attributes is equal to 1 [50]. If 

the composite measure is maximized, the evaluation of 

utility will automatically be optimized. UT assumes that 

the response variables are independent which might not 

be the case in practice. UT was used to analyse the 

response parameters of surface roughness, dimensional 

accuracy and flatness together by Maurya et al. [32]. 

The Taguchi method for optimization 

Single-objective optimization could be performed by the 

Taguchi signal-to-noise (S/N) method, which is a robust 

design and optimization whereby the larger the S/N ratio 

calculated, the better the certain level of a factor. Based 

on the objective function, several types of optimization 

problem can arise: (i) smaller-the-better [51], (ii) larger-

the-better [31],[52] and (iii) nominal-the-best [28,53,54]. 

Multi-objective optimization with Taguchi 

orthogonal arrays could be conducted by grey relational 

analysis (GRA), which is based on the grey system theory 

to convert multi-response problems into single-response 

ones [55]. First, GRA normalises experimental data 

between 0 and 1 before a grey relational coefficient is 

calculated that determines the ratio between the desired 

(ideal) values and the actual (experimental) response 

data. A grey relational grade is then calculated as a 
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weighted sum that considers the grey relational 

coefficient corresponding to each process response and 

their corresponding weights [56]. In the literature, the 

compressive strength, measured porosity and 

dimensional accuracy of fabricated porous scaffolds 

were optimized simultaneously with this method [57]. 

Desirability Optimization Method (DOM) 

One of the first approaches to multi-response 

optimisation based on a desirability function was 

proposed using process targets and response deviations 

to represent a single-objective function [58]. The 

desirability function is used to determine the desirability 

of the process parameters set compared to all potential 

solutions and with respect to the required nominal 

response values. Individual desirability (di) evaluates 

how the process parameters settings optimize the ith 

single response, while composite desirability (D) 

evaluates how the settings optimize a set of responses 

overall. The individual desirability functions for each 

response variable should be defined. The desirability 

function has a lower and an upper limit, goal (maximize, 

minimize or target) and importance [59]. Composite 

desirability is defined as the weighted geometric mean of 

the individual desirabilities for the responses: 𝐷 = √𝑑1 ∙ 𝑑2 ∙ … ∙ 𝑑𝑛𝑛
 (5) 

Desirability has a range of 0 to 1 whereby 1 

represents the ideal case and 0 indicates that at least 1 

response falls outside the acceptable limits. 

Non-conventional, artificial intelligence (AI)-based 

multi-objective optimization methods 

Metaheuristic search techniques belong to artificial 

intelligence and have drawn significant attention over the 

last two decades for solving multi-response optimisation 

problems. In the case of 10 different AI optimizations 

(namely Genetic Algorithm Optimization, Simulated 

Annealing Algorithm Optimization, Particle Swarm 

Optimization, Grey-Wolf Optimization Algorithm, Moth 

Flame Optimization Algorithm, Whale Optimization 

Algorithm, Jaya Optimization Algorithm, Sunflower 

Optimization Algorithm, Lichtenberg Optimization 

Algorithm and Forensic-Based Investigation 

Optimization Algorithm) for the MEX manufacturing 

process, response variables [60] have been utilized to 

predict the optimal settings of experiments. Genetic 

algorithm optimization (GA) - a stochastic search 

technique inspired by the principles of natural evolution 

- has been proven as a potent multi-directional heuristic 

search method for optimising highly nonlinear, non-

convex and complex functions since it is less likely to get 

trapped at a local optimum than traditional gradient-

based search methods. The individuals in a population 

are then evaluated based on their fitness value whereby 

the individuals with the highest fitness values are taken 

as bases (‘parents’) for the next generation. The 

procedure is iterative, that is, continues till the 

termination criterion is reached. Some examples of GA-

based multi-response optimization are found in the 

literature [18,29,31,61,62]. 

Another evolutionary metaheuristic technique is 

Particle Swarm Optimization (PSO) inspired by the 

social behaviour of flocks of birds and schools of fish. 

Similarly to GA, PSO is also a population-based heuristic 

computational method whereby the population of the 

potential solutions is referred to as a swarm and each 

individual solution within the swarm is called a particle. 

The algorithm is initialised with a population of random 

solutions (a flock of birds where a bird is called a 

particle) and searches for the optimum by updating 

generations. Unlike GA, PSO has no evolution operators 

such as crossover and mutation. Two research articles 

presented one example each of this type of optimization 

[63],[64]. 

A new metaheuristic algorithm, namely Grey Wolf 

Optimization, inspired by the social hierarchy and 

hunting behaviour of grey wolves (Canis lupus) was 

developed [65]. This modern population-based algorithm 

was used to optimize the process whereby the functional 

relationship between five important FDM process 

parameters concerning polyethylene terephthalate glycol 

(PETG) was studied regarding their effect on the flexural 

strength of this material [66]. The maximum flexural 

strength obtained by the algorithm was approximately 

14% higher than the best result obtained by the series of 

experiments. 

3. Modelling in different types of additive 
manufacturing 

3.1. Binder Jetting (BJT) 

Binder Jetting (BJT) is an AM process in which a liquid 

bonding agent is selectively deposited to join powder 

materials together [1]. BJT can work with various types 

of materials, including metals, ceramics, polymers and 

composites. Metal powders such as stainless steel, 

aluminium and titanium are used in aerospace, 

automotive and medical device manufacturing as well as 

in ceramic powders in dental implants and electronics, 

sand powders in moulds in addition to polymer powders 

to create prototypes. The binding agent is used to 

selectively bond and solidify the powdered material in 

specific areas layer by layer to create a three-dimensional 

object. The binding agent chosen depends on the material 

being printed and the desired properties of the final 

object. 

Several parameters or factors influence the quality 

of the BJT process (Appendix - Figure 2). In the case of 

DoE, the main goal is to study the effects of the various 

parameters on the response variable and quality 

characteristic of a certain manufacturing process. Since 

most of the factor levels are controllable, they are 

potential factors for DoE investigations. The input and/or 

controllable parameters in the case of BJT can be divided 

into five main categories, namely Material, 

Manufacturing process, Temperature, Time and 

Equipment. Two types of material, that is, powders and 
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fluids, as well as their characteristics are important in 

BJT. The temperature and the different time conditions 

can affect the output of the process. The parameters set 

for the equipment such as the build, number of layers, 

binder drop and roller properties play a crucial role in the 

manufactured specimen. The parameters set in the 

manufacturing process, that is, feed-to-powder ratio, 

layer thickness and binder saturation, also affect the AM 

process. 

One critical quality characteristic when examining 

the binder jetting AM process other than compressive 

strength and porosity is transverse rupture strength (TRS) 

that measures the maximum stress a material can 

withstand just before it breaks when subjected to a 

bending load [57],[67]. Since the dimensional accuracy 

can also influence the quality of the BJT process, the 

shrinkage percentage ((actual dimension of a sample — 

designed dimension of a sample)/(designed dimension of 

a sample) x 100 %) can be determined [51]. Besides the 

dimensional accuracy, the surface roughness of the 

produced specimen can be a response variable [29]. 

In the case of the BJT process, 3-5 factors are varied 

by DoE methods and mainly the linear effects of the 

parameters investigated (Table 4). The main purpose of 

the studies is to describe the process mathematically and 

optimize the BJT process for the selected response 

variable(s). 

3.2. Directed Energy Deposition (DED) 

Directed energy deposition (DED) is an additive 

manufacturing process in which the focused thermal 

energy is used to fuse materials by melting them as they 

are being deposited [1]. The energy source in DED can 

be a high-powered laser, electron beam or plasma arc. 

DED is used mainly in the aerospace, automotive, rapid 

tooling and biomedical industries to produce functional 

metal parts, add material to existing parts and for repairs 

[73]. The material selected depends on the specific 

application. Titanium, aluminium and nickel alloys are 

used in the aerospace industry, while titanium and cobalt-

chromium ones are applied in medical equipment [74]. 

The typical workflow of the metal additive 

manufacturing process is design, conversion, file 

transfer, configuration, print, removal, machining 

(optional), heat treatment (optional), inspection 

(optional) and handover (optional) [75]. The quality of 

the DED additive manufactured specimen depends on 

several factors such as the material, feeding, equipment 

and energy source (Appendix - Figure 3). Two types of 

materials have to be chosen, one for the wire/powder and 

another for the substrate. While the feeding parameters in 

addition to the feed rates of the carrier gas and 

wire/powder can be set, the geometric position, angle and 

direction are other optional factors when investigating a 

DED process. Regarding the equipment itself, 

temperature settings and manufacturing strategies as well 

as the energy source could also affect the quality of the 

part produced. 

The response variables of DoE during the 

investigation of DED processes are usually related to the 

geometry and characteristics of the bead deposited. The 

geometries of these beads are width, height, angles and 

dilution [30,61,69], however, the hardness [59], 

roughness [72], porosity [53] or coefficient of friction 

[45] could be measured as outputs. According to Table 4, 

mainly 3-5 factors are chosen to describe the DED 

process, but a screening design, that is, Taguchi L18, 

varies 9 factors simultaneously. 

3.3. Material Extrusion (MEX) 

Material extrusion is an AM process in which material is 

selectively dispensed through a nozzle or orifice [1]. A 

wide variety of materials can be extruded using MEX: 

thermoplastics such as acrylonitrile styrene acrylate 

(ASA), acrylonitrile butadiene styrene (ABS), 

polycarbonate, polyetherimide, polylactic acid (PLA), 

high impact polystyrene (HIPS), thermoplastic 

polyurethane (TPU) and aliphatic polyamides (PA, 

nylon) as well as high-performance plastics such as 

polyether ether ketone (PEEK) and polyetherimide (PEI) 

[76]. MEX additive manufacturing technologies have 

gained widespread popularity and applications due to 

their simplicity, reliability and affordability. 

The possible factors for DoE during MEX 

experimentation can be divided into four categories, 

namely Temperature, Equipment, Material and the 

Manufacturing process (Appendix - Figure 4). The 

temperature conditions - e.g. that of the build platform, 

nozzle as well as the printing and cooling conditions - 

play a significant role as far as the quality of a MEX-

produced specimen is concerned. Regarding the 

equipment, the fan speed and diameter of the nozzle are 

optional factors, moreover, the characteristics of the 

material can affect the output parameters. The 

manufacturing process consists of such parameters as the 

infill and its properties, flow rate, support, wall and layer 

thickness as well as build orientation. 

The quality of the MEX process could be described 

by dimensional parameters and mechanical properties. 

The dimensional accuracy of the produced specimen is 

characterized by its length, width, thickness or 

dimensional error [60,77-81]. The surface quality of the 

part is measured by its surface roughness [38],[82] as 

well as by geometrical dimensioning and tolerancing 

(GD&T) parameters [83]. Its mechanical properties such 

as strength refer to the capacity of a material to cope with 

external loads and stresses. During MEX processes, the 

Table 4: DoE in the fields of BJT and DED 

(abbreviations are based on [1]) 

 



  DRÉGELYI-KISS 

Hungarian Journal of Industry and Chemistry 

62 

following mechanical properties can be used as response 

variables of DoE: flexural strength [31,62,66,84], tensile 

strength [85],[86] and the Young’s modulus [77],[87]. 

The energy factor and consumption as response variables 

in a MEX experimental design were optimized by 

Barbose et al. [88]. 

DoE methods are widely used for the description 

and optimization of the MEX additive manufacturing 

process. Applications of all types of DoE methods from 

the simplest to more advanced designs are found in the 

literature (Table 5). More screening designs such as 

Taguchi L27 for linear effects and definitive screening 

design for quadratic effects are available. 

3.4. Material Jetting (MJT) 

Material jetting (MJT) is an AM process in which 

droplets of feedstock material are selectively deposited 

[1]. It is possible to apply thin layer thicknesses that 

enable high-quality parts to be printed as well as diminish 

staircase effects and thin walls [91]. MJT can be applied 

in rapid prototyping, the aerospace industry, dental and 

orthodontic applications, jewellery, architecture and 

construction. The materials used in MJT are usually 

thermoset photopolymers. 

The possible input or controllable parameters 

during the experimentation of MJT manufacturing 

processes are shown in Appendix - Figure 5. The quality 

of the process can be affected by 4 categories, namely 

Material, Temperature, Equipment and Manufacturing 

process. Like the MEX technology, the temperature of 

parts of the equipment, that is, the nozzle, platform and 

printer, can cause deviations in the response variables of 

MJT. The chemical and mechanical characteristics of the 

material are important factors as far as the parameters of 

the equipment, i.e. build position, orientation and layer 

thickness, are concerned. Four factors influence 

manufacturing processes, namely the curing process, 

drop properties, inkjet printhead parameters and type of 

support. 

The dimensional accuracy, surface roughness and 

mechanical properties of MJT-printed parts are crucial to 

obtain correct and reliable results after measurements are 

taken and ensure they function properly following final 

assembly. The length, width and height of the specimen 

[17,18,92]; the roundness and cylindricity [20]; as well 

as the surface roughness were analysed as response 

variables [16,32,93]. Mechanical properties such as 

tensile strength were examined [14],[94] and the colour 

of the MJT-produced part can be output parameters 

referring to its quality [95]. DoE methods are used to 

characterize the MJT process and each type of 

experimental design can be found in the literature as 

presented in Table 6. 

3.5. Powder Bed Fusion (PBF) 

Powder bed fusion (PBF) is an AM process in which 

thermal energy selectively fuses regions of a powder bed 

[1]. As one of the most applied processes, PBF is 

increasingly being used to manufacture products in, for 

example, the aerospace, medical, automotive, tooling and 

consumer goods industries. One of the significant 

advantages of PBF is its ability to produce highly 

customized and personalized products, supporting a wide 

range of materials including metals, polymers and 

ceramics. 

The input and controllable parameters of the PBF 

additive manufacturing process can be divided into four 

categories, namely Equipment, Material, Energy Source 

and Manufacturing process (Appendix - Figure 6). 

Within the Equipment category, the layer thickness, 

working distance and gas flow can affect the output of 

the PBF process. The material composition and 

characteristics of the powder such as its distribution, 

particle shape and density are other examinable factors. 

Different energy sources and their settings affect the 

quality. The most investigated parameters by DoE are 

hatch space, temperature and scanning within the 

Manufacturing process category. 

The response variables for characterizing the PBF 

process could be dimensional such as the length, width 

and depth of the melt pool [96] as well as the surface 

roughness [99],[103] and dilution rate [33]. The porosity 

of the manufactured specimen [44,49,98] is particularly 

critical as it can significantly affect the mechanical 

properties of components, cause structural failures as 

well as decrease their strength and Young’s modulus. 

Some researchers have measured the mechanical 

Table 5: DoE in the field of MEX (abbreviations are 

based on [1]) 

 

Table 6: DoE in the fields of MJT PBF (abbreviations 

are based on [1]) 
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properties of the specimen [48],[100] and hardness of the 

produced part [101]. 

Details about the DoE and optimization in the case 

of PBF processes are contained in Table 6. Typically 3-5 

input parameters are varied during the experimental 

designs and every type of DoE can be an example of this 

technology. 

3.6. Sheet Lamination (SHL) 

Sheet lamination (SHL) is an AM process in which sheets 

of material are bonded together to form a part [1]. The 

raw materials (worksheets) are cut by lasers or cutters 

depending on their geometry before the lamination 

process. The sheets are stacked layer by layer and bonded 

by diffusion instead of melting. Laminated object 

manufacturing (LOM) and ultrasonic additive 

manufacturing (UAM) are the main techniques in this 

process. The processing speed is relatively high with low 

operating costs and easy material handling. Various 

materials such as polymers, ceramics, paper and metals 

can be used in this SHL process, the main advantages of 

which are its ability to be integrated into a hybrid 

manufacturing system by working with ceramic and 

composite fibre materials without the need for support 

structures. The main limitation of this process is the 

limited availability of materials and the removal of 

excess materials after lamination. 

The possible factors of DoE are presented in 

Appendix - Figure 7 in the case of the SHL process that 

can be divided into three categories, that is, Equipment, 

Material and Manufacturing process, based on a 

literature review. The temperature, force and pressure 

can be varied to investigate the performance of the SHL 

process. The material characteristics such as thermal 

properties, flexibility, strength or type can affect the 

quality of the process. Moreover, the speed, sheet 

thickness and type of heat source or binding method are 

possible factors when examining quality in the case of the 

SHL additive manufacturing process. 

The response variables of the SHL process can be 

measured from bending and tensile tests [34,47,104] or 

linear weld density [105]. Some applications of sheet 

lamination in the field of DoE can be seen in Table 7. 

3.7. Vat Photopolymerization (VPP) 

Vat photopolymerization (VPP) is an AM process in 

which a liquid photopolymer in a vat is selectively cured 

by light-activated polymerization [1]. VPP is widely 

utilized in the fields of engineering, manufacturing, 

dentistry, healthcare, education, entertainment, jewellery 

and audiology. Dental applications of VPP are emerging, 

e.g. the mechanical properties of 3D-printed resin-based 

dental parts like their biocompatibility, accuracy as well 

as antimicrobial and surface properties [109]. 

The possible factors of experiments concerning the 

VPP process are detailed in Appendix - Figure 8. The 

quality performance of the VPP process can be 

influenced by the parts of the equipment such as the tank, 

light source or platform. The chemical, mechanical and 

physical characteristics of the resin can affect the VPP 

process. The environmental conditions such as 

temperature and humidity as well as the design of the 

specimen are possible factors worth investigating within 

this field. The manufacturing process parameters such as 

print speed, post-processing and duration can be varied. 

Response variables of the VPP process include 

tensile strength, hardness and energy consumption 

[19],[106] as well as printing time [107]. Among the 

dimensional parameters of the specimen, its length, 

width, GD&T parameters, shrinkage and surface 

roughness can be investigated [35],[108]. During VPP, 

mainly Taguchi and RSM methods with multi-objective 

optimization are addressed in the literature (Table 7). 

4. Discussion 

This review describing the critical-to-quality 

characteristics of a certain additive manufacturing 

process contains several important steps and decisions. It 

is important to precisely declare the purpose of carrying 

out research before designing experiments. Although 

several types of DoE are available in the mathematical 

literature, in the field of AM, Taguchi and RSM methods 

are the most common. Nowadays, definitive screening 

designs are emerging. Augmenting a DSD will greatly 

assist practitioners to avoid the problems of underfitting 

and overfitting [110]. 

The RSM approach is based on a philosophy of 

sequential experimentation, whereby the objective is to 

approximate the response with a low-order polynomial in 

a relatively small region of interest that contains the 

optimum solution. Some computer experimenters 

advocate a somewhat different philosophy by seeking to 

create a model that approximates the true response 

surface over a much wider range of design variables, 

sometimes extending over the entire region of operability 

[36]. Even though only a few applications of sequential 

experimentation have been studied in the literature, it 

may still be useful in the future. 

The role of the DoE-Exp-Eval-Opt process 

(Figure 1) is not only important in research into AM 

processes but perhaps during mass-production AM 

processes to decrease costs and increase the quality of a 

certain type of additive manufactured part. 

Table 7: DoE in the fields of SHL and VPP 

(abbreviations are based on [1]) 
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5. Appendix: Ishikawa diagrams 

 

 

 

 

 

 

  

 

Figure 2: Possible factors for the critical-to-quality (CTQ) characteristics of BJT additive manufacturing 

 

Figure 3: Possible factors for the critical-to-quality (CTQ) characteristics of DED additive manufacturing 

 

Figure 4: Possible factors for the critical-to-quality (CTQ) characteristics of MEX additive manufacturing 
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Figure 5: Possible factors for the critical-to-quality (CTQ) characteristics of MJT additive manufacturing 

 

Figure 6: Possible factors for the critical-to-quality (CTQ) characteristics of PBF additive manufacturing 

 

Figure 7: Possible factors for the critical-to-quality (CTQ) characteristics of SHL additive manufacturing 

 

Figure 8: Possible factors for the critical-to-quality (CTQ) characteristics of VPP additive manufacturing 


