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In this work the pipeline network for oil transport has been optimized. The network layout has already been given, the 
flow rates are specified and the inlet and outlet pressures are defined. The capital cost of such a network has been 
minimized. From many feasible combinations of section diameter distributions the aim was to find the optimal one. The 
problem has been solved by applying nonlinear programming. 
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Introduction 

The total head loss is 

h =A~L+L£ 
L 2g D 

(1) 

(2) 

There are many works dealing with the solution of fluid 
network problems [1-3, 6, 8, 9]. There are also 
numerous algorithms for pipeline network optimization 
by minimizing some cost functions [6, 4]. The network 
which has to be optimized is the network for oil 
transport (Fig.l). The network consists of nodes, 
sections and paths. A pipe section is a pipeline with a 
constant diameter and no branching. A node is defined 
as the branching point or the point of inlet or outlet from 
the section. Finally, a path is defined as the sequence of 
pipe sections between an inlet (source) and outlet 
(consumer) from the network. Thus, each section has 
two nodes, one at each end. Each path has at least one 
section. The configuration of the network is given so are 
the flows through each section as well as the inlet and 
outlets pressures. While the inlet and outlet pressures are 
fixed, the other node pressures are unknown and subject 
to change via D. This problem has many feasible 
solutions. The goal was to find that one which 
minimizes the capital cost. 

where A is the Darcy friction factor, while L and Le are 
pipe length and equivalent length respectively. For a 
long distance pipeline the effect of Le can be neglected. 
For hydraulically smooth pipes the friction factor 
depends only on Reynolds number. In that case Blasius 
correlation [5] can be used 

A. =0.3164Re-0
'
25 

Combining Eq. ( 1) and (2) with continuity equation 

4Q 
v= Dk 

(3) 

(4) 

it follows for the case when Blasius Eq. (3) can be used 

KD-4·15 :::; -AP -I::JJpg 
Pipe section flow 

where 

The oil that flows through the network can be K = 0.242Qt75 p 0
·
75 p 0·25 L 

considered as isothermal and incompressible. As the 
network is in the ground the temperature variances are and L1P = P2- P1: &1. = h2- h1. 
negligible. Having in mind that the section diameter is 
constant, the section velocity is also constant. The 
Bernoulli equation for each pipe section in that case is 

(5) 

(6) 
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Node 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Table 1 Pipeline network nodes data 

h[m] 

942 

P[kPa].l0-5 

147.1 
unknown 
unknown 
unknown 

4.9 
unknown 

4.9 
4.9 

unknown 
unknown 
unknown 

4.9 
4.9 

Most of the pipes in the engineering practice have rough 
boundaries. In that case the equation of Altshul [5] can 
be used 

{ 
68 )

0

·

25 

A= 0.1 .E_+-
D Re 

(7) 

where E is the pipe surface roughnes. In this case the D 
cannot be explicitly expressed as it can be in Blasius 
Eq. (3). The Eqs. (5) and (6) have now the following 
form 

K* n-s = -AP-Mpg (8) 

(9) 

Note that K isn't a true constant because it depends on 
D,. since A depends on D. 

Pipe cost function 

The weight per unit length of the pipe is assumed to be 
an exponential function of the diameter 

W=aDP (10) 

The total weight of the pipe section will be WL [kg] 
and the price of such a pipe can be easily calculated 
knowing the price of the pipe per unit weight. It is a well 
knov..n fact that the ratio &D (pipe wall thickness/pipe 
diameter) depends upon pressure. Eq. (10) is usually 
correlated with a given pressure (Pcorr)· In the case of a 
pipe network it is usually a maximum expected pressure 
in the network. The higher pressure demands larger q 

and consequently a larger weight of the pipe. When the 
pressure in the pipe (P) differs from pressure (Pcorr) for 
which Eq. ( 10) was correlated, the following relation is 
proposed [7]. 

{11) 

Table 2 Pipeline network sections data 

Section Input, output node L[m] Q[m3s-l] 

Sl 1,2 12,000 1.2688 
S2 2,3 18,000 1.2688 
S3 3,4 150,000 1.2688 
S4 4,5 5,000 0.2985 
S5 4,6 110,000 0.4478 
S6 6,7 65,000 0.0746 
S7 6,8 5,000 0.3732 
S8 4,9 141,000 0.5224 
S9 9,10 5,000 0.1866 

SlO 9,11 161,000 0.3358 
S11 11,12 5,000 0.1119 
S12 11,13 85,000 0.2239 

Pipe network optimization 

For a pipe network that consists of n pipe section there 
is ann Eqs.(8) 

i =l,n (12) 

with 2n unknown variables (Di and L1Pi). To reduce the 
number of the equations as well as the number of the 
unknown variables the alternative system of equations 
can be formulated. For each path we have 

±K;Di-4.75:=.-i)MJ,-Llh;pg)=APj-Mzjpg j=l,m (13) 
i=l i=l 

where k corresponds to the number of the section that 
belongs to path j, while m represents the number of 
paths. In such a way the unknown pressure drops L1Pt are 
excluded Recall that the paths pressure drops JJ.Pj, from 
the source to the sink, are fixed. 
The capital cost function which has to be minimized is 

n n n 

WN = L ~L1 == LaLtDf == L.ciDf 
i=l i=l i=l· 

(14) 

By introducing new variables into the Eqs.(l3) and (14), 
in the case when Blasisus relation can be used, 

i= l,n 

we have the following nonlinear cost function 

(min) WN = i cix;n·ztosp 
i=l 

subject to linear constrains 

k 

~ K.x. = t}.P. - Ah .p,ru .L.J ll J JO 
i=l 

where ci = aLi. 

j=l,m 

(15) 

(16) 

(17) 

For rough pipes the following variables are introduced 

i=l,n {18) 

Eqs. (14) and(l3) are now 



Path 

P1 
P2 
P3 
P4 
P5 
P6 

Table 3 Pipeline network paths data 

Sections 

S1,S2,S3,S8,Sl0,Sl2 
S1,S2,S3,S8,S10,S11 

S1,S2,S3,S8,S9 
S1,S2,S3,S4 

S1,S2,S3,S5,S6 
S 1 ,S2,S3 ,S5 ,S7 

3 

Input, output 
node 
1,13 
1,12 
1,10 
1,5 
1,7 
1,8 

Fig. I Pipeline network layout 

n 

(min)WN = Lci(x;)-02
tl 

i=l 

subject to 

14.22 
14.22 
14.22 
14.22 
14.22 
14.22 

(19) 

Table 4 Initial values for smooth pipes 

Section 
S1 
S2 
S3 
S4 
S5 
S6 
S7 
S8 
S9 

S10 
Sll 
Sl2 

D[m] 
1.0 
1.0 
1.0 
0.3 
0.6 
0.5 
0.4 
0.7 
0.3 
0.7 
0.3 
0.6 

K 10'6 

0.463 
0.694 
5.782 
0.015 
0.685 
0.018 
0.023 
1.150 
0.007 
0.606 
0.003 
0.157 

Table 5 Optimization results for smooth pipes 

Section 
Sl 
S2 
S3 
S4 
S5 
S6 
S7 
S8 
S9 
SlO 
Sll 
S12 

D[m] 
1.025 
1.025 
1.025 
0.268 
0.624 
0.393 
0.414 
0.790 
0.255 
0.706 
0.272 
0.638 
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(20) are: a= 1412.15 and f3 =2. The initial guess values f0r 
D as well as K are given in Table 4 while the 
optimization results are presented in Table 5. 

Experimental 

The layout of the pipeline network for oil transport is 
shown in Fig.l. The data necessary for the calculations 
are given in Tables 1, 2 and 3 [7]. 

Hydraulically smooth pipes 

For such systems the linear constrains are Eqs. ( 17) 

Ktxt + K2X 2 + K3x3 + K8:xg + K10x10 + K12x12 = 14,220,000 

Klxl + K 2x 2 + K 3x3 + K 8x8 + K10x10 + K 11xu = 14,220,000 

Ktxt + K2x2 + K3~ + K8:xg + K9~ = 14,220,000 (21) 

K1x1 + Kzx2 + K3~ + K4x4 = 14,220,000 

Ktxt + KzX2 + K3Xs + K5x5 + K6x6 = 14,220,000 

Ktxt + Kzx2 + K3x3 + K5x5 + K1x., = 14,220,000 

and the objective function is 

n 

(min) WN = L cix-:2105
P 

i=l 

Thus we have a nonlinear objective function with 
linear constrains. Eq. ( 11) has been correlated for Pr:orr = 
159.105 [Pa] and the obtained values for coefficients 

Pipes with rough boundaries 

In this case the linear constrains are given by Eqs. ('2(}} 

K~x; + K;x; + K;x; + K;x; + K~0x;0 + K;2x:z = 14,220,000 

K; x; + K;x; + K;x; + K;_x; + K1~x:0 + K;1x:1 = 14.220.000 

K; x~ + K;x; + K;x; + K;x; + K;x; = 14,220,000 (22) 

K; x; + K;x; + K;x; + K;x; = 14,220,000 

K~x; + K;x; + K;x; + K;x; + K;x; = 14,220.000 

K;x; + K;x; + K;x; + K;x; + K;x; = 14.220,000 

with the following objective function 

(min) WN = !c;(x)-c.lP 
i=l 

The initial guess values for D and K"" are presented in 
Table 6 while the optimization results are given in 
Table 7. The value for £ :::: 0.2 is taken from literaure 
[llJ. Since K* values depend on D (see Eqs. 9 and 7) the 
optimization results cannot be achieved in one step. This 
means that on the base of the first optimum D values we 
have to recalculate K* values and repeat the optimization 
procedure. As it can be seen (Table 5 and 

Table 6 Initial valurs for rough pipes 
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Section D[m] K*Jo-6 

S1 1 0.464 
S2 1 0.696 
S3 1 5.803 
S4 0.268 0.011 
S5 0.62 0.613 
S6 0.47 0.015 
S7 0.5 0.019 
S8 0.79 1.085 
S9 0.26 0.005 

S10 0.72 0.560 
Sll 0.3 0.021 
S12 0.7 0.144 

Table 7) the optimization results are practically the same 
as in the case of smooth pipes. 

Conclusion 

in this work the capital cost of pipeline network for oil 
transport has been minimized. The configuration of the 
network was fixed, so were the flow rates through each 
section as well as the pressure drops in each path. The 
fluid that flows through the network assumed to be 
isothermal and incompressible. The objective function 
which has to be minimized was the equation for the 
weight of the pipeline network as the function of section 
diameter D, while the constrains were equations for the 
pressure drop for each path. Diameter D of each section 
has been adjusted in sucl~ a way that it could give a 
minimum weight under the given constrains. The 
originally nonlinear constrains, with respect to D, were 
linearized introducing new variables. The objective 
function remains nonlinear .. The linearly constrained 
nonlinear objective function has been solved by 
nonlinear programming. Two relations for Darcy friction 
factor A, have been used. Blasius formula for 
hydraulically smooth pipes, Eq. (3), and Altshul 
correlation for rough pipes, Eq. (7). In the latter, due to 
the fact that A. is function of D and K is function of A., K 
has to be recalculated in each step of the procedure. 

SYMBOLS 

c coefficient in Eq. ( 16) 
D pipe diameter, m 
g acceleration due to gravity, kgm-2 

h height~ m 
llh height difference\ m 
hL head loss~ m 

.index. for pipe network sections 
j index. for pipe network paths 
lc number of sections in a given path 
L node height, m 
L~ equivalent height, m 

Table 7 Optimization results for rough pipes 

Section 
S1 
S2 
S3 
S4 
S5 
S6 
S7 
S8 
S9 

S10 
Sll 
S12 

D[m] 
1.025 
1.025 
1.025 
0.268 
0.624 
0.393 
0.414 
0.79 

0.255 
0.706 
0.272 
0.638 

m number of pipe network paths 
n number of pipe network sections 
P pressure, kPa 
LiP pressure drop, kPa 

K'Io-6 

0.467 
0.701 
5.838 
0.011 
0.614 
0.014 
0.018 
1.085 
0.005 
0.557 
0.020 
0.141 

Pcorr pressure for which Eq. ( 11) has been correlated, 
kPa 

Q Flow rate, m3s-1 

Re Reynolds dimensionless number 
W weight per unit length, kgm-1 

WS one section weight, kg 
WN whole network weight, kg 
x variable defined by Eq. ( 15) 
x* variable defined by Eq. (18) 

Greek symbols 

a coefficient in Eq. (10), kg 
/3 coefficient in Eq. ( 10) 
8 pipe wall thickness, m 
A. Darcy friction factor 

Abbreviations 

Pl, P2, ... path 1, 2, ... 
Sl, S2, ... section 1, 2, .. 
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