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This paper is an introduction into the Boundary Element Method (BEM) with collocation to find the numerical solution
of two different types of Neumann problems. At first we start with the Laplace equation and continue later with the heat
equation on a bounded convex domain with smooth boundary in two dimensions. We will show how to transform the
governing problem into a boundary integral equation which can be solved by dividing the boundary into a finite number
of segments and applying the collocation method. We finish presenting an example of the heat equation.
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Introduction

Let Q be a convex open domain in R? with smooth
boundary 0Q . Consider the Laplace equation:

Au(x,y)=0 inQ,
%: a(x,y) on aQ,
2 2
where A=6—2+a—2
oX® oy

and the heat equation

au(x,y,t) 62u(x,y,t)+ d%u(x,y,t)
at X oy?

where(x,y)e Q, te(0,T]
with initial and boundary conditions,
u(x,y0)=f(x,y),  (xy)eQ

% = g(x,y,t), (x,y)e o0, te (O,T]

By using the fundamental solution we will develop
the Boundary Integral Equation (BIE) from the
governing boundary value problem and will create a
Fredholm integral equation of the second Kkind.
According to the fact that the solution of a Neumann

value problem is not unique the same is true for the
approximate solution which we get by using BEM and
collocation. Piecewise constant and piecewise linear
functions will be used to form the ansatz functions
which lead to a simple linear system of equations.

Neumann Boundary Value Problem for the Laplace
Equation

Let Q be a convex open domain in R? with smooth
boundary 0Q. Consider the Neumann boundary value
problem (NBVP):

Au(x,y)=0 inQ, 1)
au(xy) _ a(x,y) onoQd. (2
on
It is well known that for two dimensions
log|x—¢&
E(x.&)= —% ®)
T

is the Green's function or the fundamental solution for
the operator A, that means it is the solution of the
problem

AgE(X!ég):—5(X—§) vx, & e R?. (4)

It can be seen that E is not defined at x=¢& , where E is
singular.
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Boundary Integral Equation

For xeQ we follow the definition of the
distribution &, and with (1) and (4)

u(x)=6(x=&)Yu)
~ [ (Au(E(2)- (2, E(x E(e)he

The second Green-GauR formula gives
¢ (ou() PE(x,¢)
u()= (W E(x,g‘)—Tu(f)de ¥x e Q.(5)

There is no singularity for xeQ. Therefore for xeQ

we can compute u(x) by knowing the boundary data u(x)

and 2—” on 0Q. We will refer to this formula as the
n

representation of the solution u(x) for xe Q.

Our Neumann problem from above gives g_u on
n
0Q . We have to find u(x) = g(x) on 0Q2.
Both integrals in (5)

6u(§) E(x.¢)do, and [

aE (x 5)
.LQ an

u@do,  (6)

are well defined for xe Q. But for x € 02 we have a

jump of magnitude ( ) for the second integral :

lim [ CEX)

X—>Xo€0Q ¥0Q ang

u(elio, =) [ 2EL0.S), ey,

S

and so we obtain the boundary integral equation

+LQ(E(XO ,§)au_(§)_wu(§)]do.§ (7)

on on :

()= 42

2

VX, € 0Q

Then we get from (7) a Fredholm integral equation of
the second kind

u(x)

OE(Xx ou
b, [ 2 5) (oo, = [, Exe) ko, )
vx € 0Q where u on the left hand side is unknown and
aulx) _ g(x) on 8Q is given.
on
Collocation Method

The integral equation (9) does generally not admit a
solution in closed form. We will show how to solve
such a problem numerically using the collocation

method.
au(x)
on

unknown Dirichlet data u(x), X€&?2 from

Given solve for the

=g(x), xeaQ,

U(ZX) +fan aEa(:’f) U(§)do—§ = .[aQ E(x,§)g(§h0'§ )
VX € 0Q2

The solution of (9) is not unique since if we replace u(x)
by T(x)=u(x)+c where c is constant then T is a

solution, too. We need a compatibility condition so that
the Neumann boundary value problem is well posed:

g(x) should satisfy
0
0= [ Au(x)dx = L{)%da = [ 9(x)do

We use now the collocation method to discretize the
problem. We subdivide the boundary oQ into n arcs
r,,T,,..,I, and call the midpoints of the arcs

, X, with x, = x,. We take the ansatz:

(10)

Xy 5 Xy ..
(11)

where ,(x) is the characteristic function on T} and a,
are unknown parameters. That means G(x) is a

piecewise constant approximation to u(x) on 0Q. As
collocation points we use the midpoints. This leads to

4 .~ oE(x; .$)
7+§ai '[Fu on,

1<j<n
These are n linear equations with the unknowns
a,,...,a,, so that we have n x n linear system of

equations

do, = [_Elx;.£Ja(¢)o,, (12)

Neumann Boundary Value Problem for the Heat
Equation

Let QO be a bounded convex domain with smooth
boundary Q=T in R?. Consider the heat equation

au(x,y,t) 62u(x,y,t)+ d%u(x,y,t)

a oy’ ()
(x,y)eQ, te(0,T]
with initial and boundary conditions,
u(x,y0)=f(x,y),  (x,y)eQ (14)
% gloyt) (xy)elte@T].  @5)

The problem will be transformed into an integral
equation by using the fundamental solution and will be
solved by applying the collocation method in the same
manner as for the Laplace equation (1) and (2).

Boundary integral equation

The well-known Green’s function or fundamental
solution for the heat equation



e
L i) sy

4r(t—7) ,

0 ift<r

E(&,7;x,t)= (16)

is used as weight function to generate the integral
equation

[ 2t

where
u(x,t) is the unknown solution of the heat equation,

& = (4:1752 )1 X= (va)v
0?02
=——+ .
Poog og
Let O be a bounded convex domain in R? with
smooth boundary I' = 0Q.

a“(é t)jE(g,f;x,t) de dr =0

By using the Gauss-Green formula the integral
becomes:
t
Xt :”au(g,r cfr Xt)dadr
or On;
t
-[Jule, Md dr+ff E(£,0; x,t)d&
or a

n,
for (x,t)e Qx(0,T]

The left hand side of the formula has to be replaced
by the famous jump relation if x is on the boundary. So
we are led to a boundary integral equation for xeT’
and 0<t<T.

t
_”au(fl‘[ E(&,7;x t)dafdr
o On:
t
J'J'u aEggTXt)do_de
or ng ;
+ [ F()EE0;x,t)de
Q
Substitute the given boundary condition into au(f,r)
¢
the boundary integral equation becomes
t
e Jule. ) EEX M g5 g0
or 5
t
=[[a(c.0)E(.7; xt)dafdﬂjf E(£0;x,t)d&
or

Collocation Method
We divide the boundary I" =0C into n segments as
shown.
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Xi+1

Xn

Xn+1=X1

Let X;,X,,..., X el
Define l“i'={XGRZ DX =A% (LA, ,Osﬂ,sl}
where i=1,...,n. Then I[U...UT, is a polygon in Q

since € is convex.
Let 1} be the outer unit normal vector on I,

h= max |[7| be the step width in space and for

Xn 'Xn+1 =

meN

T

k=— be the step width in time
m

and we get the time steps t; = jk (j=0,1,...,m).

Using collocation method the piecewise linear spline
functions

X' =X
i-1 , X( eri,—l
Xi — Xiy
X, — X'
pi(x)=1"2 = Xel! , i=1..,n
Xi+l - Xi
0 otherwise

are applied to space and the piecewise constant
characteristic functions

0 telt,,.t]

v- 1 oteltt]

Xi , 1=1....m

are applied to time.
With both we form the ansatz function

m n .
(¢ =2 2 ule (), (1)
j=1i=1
where u; are the unknown coefficients which we have

to find.
At the time step p of segment i the boundary integral
equation becomes
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up+t“6 Mdo—;dr
or’ g”’

Nll—\

t

= ” g(f',r). E(g',z'; X; ,tp)dgédz—

+[HEE( 0, t, Jag

This is a system of linear equations. The coefficients
can be written in short form as

o EE T
- 4 Td

O'é/dT

c’ :_f.[g( "7)-E (§ T3 X%t )da;,dr

+j" ( ,,,t )df

The boundary integral equation at time step p of

segment i is rewritten as:
p-1 Uf Clp
=|- Z[biqu] S
g=1 ul cP

n n

1

s p

F bl
L

which should be solved to get the solution.

Example
As example we consider the heat equation

au(x,y,t) _ azu(x,y,t)+ o%u(x,y,t)

at o 8y2 ,(X,y)eQ,te(O,l]

with the following initial and Neumann boundary
conditions,

u(x,y0)=1, (x,y)eQ (17)
%:o, (x,y)eT te(01] (18)

where Q is the unit circle.
Forming the boundary integral equation and
substituting the data given in (17) and (18) we get

xt +j”u
or

x=(xy)el,te (0,1]

To apply the collocation method we divide the
perimeter of the unit circle into 6 segments and
discretize the time into 10 time steps. With piecewise
linear functions ¢;, (i=1,..,6) used in space and

piecewise constant functions z;, (j=1...,10) used
in time, the ansatz function is

6E§z’xt)

do.dz = [E@E0;x,t)dg,
5 Q

3(¢.0)= 3 Yl ()7, )

j=1i=1

where u; are the unknown constant collocation points.

Then the boundary integral equation at time step p
becomes

uP +

do"f,dz'

QJG@” Bl zx, t,)

on.,
S

N |-

= [El"0;x, t, B¢’ i=1...,6
Q
So at the first time step we have the equation

lu}+jj'(u11¢1+...+ué(p6);£d05df
or’ ¢

N

= J. E(g‘",O,xi :tl)df,

Q
OE!  OE(&, 7%t
where i=1,...,6 and —-= 5 ' 1).
on, on
This is a system of linear equations
1 T pedr o | [ B ot | Y]
E 0--0 oryur; an, “ 0ryur; an: v .
1 = 4 OEL Uz
0=.0 =2 pdodr - =2 p,dod
: 2 . + lrgurl an; paone 'r[r,'ur2 6? e
1 t 1 t 1
00 =| |% [ OE; i . OE!
2 — pdodr --- —p,dodzr
Ia B Ia R
i[E(f',O;Xl,tl)
Q'
| E(f',o;xptl) :
o
JE( g 0 Xgohy
LQ'
l
The quantities —— with
ng,
e-x[’
1 .
’ — = et >
E(E 75 .t)=1 4z(t, - )
0 ift, <7
' g'-x :
oE! OE (& -x)n, S
are n,=—————-¢ """,
on.  o¢' 8z(t, - 7)
The term (&'—x;)-n. can be shown in the picture
below
X; ' néz'
y l : § T | Xja1



It is clear that
(€ x)n =((y-x)+(E~y)n,

=|y—xi|=dj.

d ; are constant. Then the elements of the coefficient
matrix of above system are

l&—x|*
ty aEl t d_71 — -
Lpdodr =— [ [(—H 4= ddo.
'(‘)-rj,ljur; on, i’ ! r]J; IO 8”(t1 _T)e P
l&—x|°
L B e
- e ddo.
I e M

We integrate analytically with respect to the time
variable and get

&=

% OE! d;_ -
Lpdodr=— [ —I2 ¢ * pdo.
!r;,lj‘ur; ong 7 i F][,l 2ﬂ‘§'—xi‘2 pine
l¢'—x*
dj Ta
- |—————e 1 p.do.
£2ﬂ‘§'—xi‘2 p;uo,

We calculate each term numerically and obtain the
system of linear equations

U | [0.328298
u | |0.328298
uy | | 0.328298
ul |~ |0.328298
ul| |0.328298

1| |0.328298

0.5 0.00202 0.00049 0.00002 0.00049 0.00202
0.00202 0.5 0.00202 0.00049 0.00002 0.00049
~10.00049 0.00202 0.5 0.00202 0.00049 0.00002
71 0.00002 0.00049 0.00202 0.5 0.00202 0.00049
0.00049 0.00002 0.00049 0.00202 0.5 0.00202
0.00202 0.00049 0.00002 0.00049 0.00202 0.5

A

The solution of the first time step is

Uy | [0.65005
u; | |0.65005
u; | _|0.65005
u; ~10.65005
ul 0.65005
ut 0.65005
LY ]
Conclusions

As shown in this paper the Boundary Element Method
(BEM) can be applied to elliptic and parabolic
differential equations. The benefit of the method
compared to conventional methods such as finite
different and finite element method is the reduction of
dimension of the problem by one since the BEM deals
only with the corresponding boundary integral equation.
Moreover for applying the collocation method the
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unknown trial or ansatz function can be formed by
simple functions i.e. piecewise constant and piecewise
linear functions. However the disadvantage of the
method is the knowledge of the fundamental solution.
So its application is limited to linear differential
equations

SYMBOLS
;" by ¢ parameters
h space step
k time step
i, ] index parameters
m number of time intervals
n number elements
n; unit normal vector
P, q time parameters
t time variable
u(x,y,t)  solution
ul collocation parameters
X, Y space variable
X space vector

Greek letters

a constant
trial function
boundary of the domain
polygonal boundary
T integral variable
domain
polygonal domain
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