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Autonomous and self-driving technology is a rapidly emerging field among automotive-related companies and academic
research institutes. The main challenges include sensory perception, prediction, trajectory planning and trajectory execu-
tion. The current paper introduces a design strategy and the mathematical background of the optimization problem with
regard to the multiple goal pure pursuit algorithm. The aim of the algorithm is to provide a low degree of computational
complexity and, therefore, a fast trajectory-tracking approach. Finally, in terms of our approach, not only the theoretical
questions but the application challenges will be described as well.
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1. Introduction

The current paper deals with the design strategies, the-
oretical background and application of trajectory track-
ing. The trajectory-follower approach that is discussed is
called the multiple goal pure pursuit algorithm, in partic-
ular the windowed version. In mobile robots or vehicles,
the trajectory design strategy seeks to identify the best
possible trajectory which approximates a desired trajec-
tory based on waypoints. This also assumes that the tra-
jectory design phase has already created the desired tra-
jectory.

This paper is organized as follows. The first section
introduces the general problem and summarizes the state-
of-the art and most relevant results. The second section
deals with the design strategy of trajectory tracking and
defines the problem precisely. The third section defines
the optimization problem and possible solutions, while
the fourth section summarizes the results. Finally, the last
section includes a summary and conclusions.

The current state-of-the-art results The essence of
pure pursuit is to choose a look-ahead point from the de-
sired trajectory in front of the vehicle and steer accord-
ing to it. This simple idea can be realized in many differ-
ent ways, e.g., the classical pure pursuit algorithm uses a
fixed look-ahead distance. This means that on the given
track, a look-ahead point can be determined as a subset
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of waypoints, which are a fixed distance from the vehi-
cle. Choosing a look-ahead distance is a tradeoff between
control overshoots and precision. If the look-ahead dis-
tance is small, the overshoot will appear because the cho-
sen point is so close that the vehicle cannot react instanta-
neously, thus continuously exceeds its target. In this case,
the absolute distance (error) is smaller but the vehicle will
oscillate. In contrast, if the chosen point is too far away,
the vehicle will follow the point after the following corner
so cuts off the bend. This behavior can be eliminated if
the look-ahead distance is adjustable or changeable. One
of the most obvious ways to modify the look-ahead dis-
tance is to scale the speed of the vehicle accordingly [1].
The other method of modifying the look-ahead distance
involves a fuzzy controller that automatically adjusts the
look-ahead distance based on path characteristics, veloc-
ity and tracking errors [2, 3]. Similarly to the fuzzy ap-
proach [4], it was shown that an autonomous vehicle can
drive at a velocity of approximately 80 km/h along ex-
plicit paths using differential GPS data. To improve the
classical pure pursuit algorithm and eliminate steering
latency, CF-Pursuit [3] replaced the circles employed in
pure pursuit with a clothoid curve to reduce fitting errors.

Although many papers have examined this domain,
the available source code is rather rare. A few of the most
notable versions are Autoware [5], Python [6] and Rap-
tor Unmanned Ground Vehicle (UGV) [7]. Our research
group also introduced a pure pursuit method based on
multiple look-ahead points [8], in this paper its updated
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version will be presented.

2. The design strategy

The motivation of our research was to construct a simple
but flexible kinematic trajectory tracking approach. In ad-
dition, the implementation of a more human-like thinking
was sought, in other words, to track and follow more goal
points on a road simultaneously. Drivers also take mul-
tiple considerations into account, e.g., not only is lane-
keeping an important task but a cyclist in the same lane
also influences planning. In our previous work the multi-
ple goal pursuit algorithm can be viewed as a supplement
to the pure pursuit algorithm. The most significant change
was the calculation of curvature. Assuming the reference
trajectory is given with a set of geometric points T , posi-
tion P , steering angle γ and orientation θ of the vehicle,
G ⊆ T is defined as the set of selected goal points with a
preset length N = |G|:

G = {G1, G2, . . . , GN |Gk, (l+o) ≤ k < (l+o+N)}
(1)

An angle αf from a domain of possible angles
[αmin, αmax] is assumed (presumably the wheel angle
limits). A sequence of curvatures can be calculated each
with a radius pf = −2/α and a centre point Cf . A goal
pointGk from setG to anyCf determines a line segment:
the normalized difference between the length of this seg-
ment and radius pf is the distance d ∈ R+ from the cur-
vature. The metric for selecting a good angle is the sum
of this difference for each goal point.

dsum =

N∑
k=0

∣∣∣ ∥∥∥−−−→CfGk

∥∥∥−ρf ∣∣∣. (2)

Here dsum denotes the total distance for goal point set G.
The aim is to minimize this distance.

This paper introduces a new approach to the multiple
goal pure pursuit algorithm, which is based on window-
ing. This algorithm is not regarded as a classical trajec-
tory tracker since it slightly redesigns the original trajec-
tory. With this method, a trajectory similar to the origi-
nal one is created, but slight modifications render it more
suitable for our vehicle to track. The design strategy con-
sists of identifying the optimum trajectory which approx-
imates a desired trajectory defined by a set of chosen
points. This means that the aforementioned set is initial
data and a minimum problem must be defined.

From the multitude of possibilities, the minimum
problem will be defined starting with the following hy-
pothesis:

1. During the approximation, the steering angle γ is
constant;

2. Changing the steering angle γ is an instantaneous
process.

If the previous hypotheses are correlated, it can be con-
cluded that the initial set of points is approximated by a

Figure 1: The windowed goal pursuit strategy

trajectory composed from arcs of a circle. The transition
from one arc to another is instantaneous. For a particular
arc of the circle, a subset (referred to here as the working
set) is selected from the initial set.

The following decisions are subjects of debate:

• The number of points included in the working set;

• The number of commune points which belong to dif-
ferent working sets;

• The position of the car when the next working set is
defined.

The aforementioned observations are shown in Fig. 1,
where a possible strategy is illustrated. The figure con-
tains two referential systems. The first, 0, is the global
(stationary) referential system; the second, 1, 2, 3, is the
mobile referential system attached to the vehicle. The
blue triangles denote the abstraction of the vehicle. Two
windows are labelled as w1,2. Each of them contains a
working set of three points.

The trajectory is a composition of two arcs of a circle,
C1 and C2. The first (C1) is defined in referential frame
1 using the window w1, i.e., the points 0x1 , 0x2 and 0x3 .
The second (C2) is defined in referential frame 2 using
the window w2, i.e. the points 0x4 , 0x5 and 0x6 . Each of
the mentioned points is defined in referential frame 0.

3. The optimization problem

Using m windows and n points for each window, the
mathematical definition of the problem is

Rj = arg

(
min

m∑
i=1

ei

)
, (3)

where Rj denotes the radius of arc Cj , ei stands for the
distance from point i to arc Cj , j represents the current
window number j = 1, . . . ,m, and i is the current point
number which belongs to window j.

The distance from point xi to Cj is also debatable.
Fig. 2 illustrates two possibilities: the first (Fig. 2a) only
considers one coordinate of the current point. In contrast,
in Fig. 2b the shortest distance is considered.
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Figure 2: Possible ways of computing the distances

For the first choice:

ei = yi − Cj (xi) , (4)

where jxi
jyi
1

 = j
0T

0xi =

 cθ −sθ 0
sθ cθ 0
0 0 1

 xi
yi
1

 0xi;

(5)
θ denotes the orientation of the referential system j; and
xj , yj represent the coordinates of the origin of referen-
tial system j.

If this definition is assumed, it is evident that this is a
quadratic regression problem with the analytical solution

1

R
= κ =

(
XtX

)−1 (
XtY

)
, (6)

where

X =

 x2
1 + y2

1

. . .
x2
n + y2

n

 (7)

Y =

 2y1

. . .
2yn

 (8)

For the second choice:

ei =

∣∣∣∣ R− ∣∣∣∣[ xi
yi −R

]∣∣∣∣ ∣∣∣∣ =

∣∣∣∣R−√x2
i + (yi −R)

2

∣∣∣∣
(9)

which has a numerical solution.

3.1 Algorithm flowchart

In Fig. 3, a flowchart is presented in order to understand
the approach more comprehensively.

The algorithm uses the vehicle parameters, pose, tra-
jectory points and input parameters as inputs. The vehicle
parameters are wheelbase b, steering angle γ and its po-
sition. Also, the points: 0xk are part of the initial data.
The algorithm parameters are: working set n, skyline d
and curvature limit. This limit decides whether the loco-
motion is based on a linear or circular trajectory window.
For every iteration, a new window is calculated.

4. Discussion

4.1 Simulation

The simulation uses the previous algorithm for a kine-
matic model which is in accordance with the starting hy-

Figure 3: Algorithm flowchart
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Figure 4: The definition of lateral deviation

pothesis, i.e., the steering is instantaneous. In the first
simulation, the following kinematic bicycle model

ẋ = v cos (θ)
ẏ = v sin (θ)

θ̇ =
v

L
tan (γ)

γ = ct

(10)

was used. To analyze the results, the lateral approxima-
tion error was defined:

• The lateral deviation error of the current position
e(k) is the distance between this position and the
current segment of the desired trajectory (Fig. 4);

• The total deviation error eT is the sum of the error
throughout the simulation from 1 to N ;

• The relative deviation error er is the ratio of the total
error to the total number of simulated points.

e(k) = distance
(
x(k), 0xu0xu+1

)
=

=
∣∣∣x(k)xu+1 − x̂uxu+1

(
x(k)xu+1 · xuxu+1

)∣∣∣ (11)

eT =

N∑
k=1

e(k) (12)

er =
eT
N

(13)

These errors are dependent on the number of points in-
cluded in the working set (n) referred to as the skyline
and the position of the decision point (d). For the desired
trajectory, a study relative to this dependency was con-
ducted and the relative errors for each case were obtained
(n, d).

The non-instantaneous steering was also simulated
(Fig. 5). In this case, the kinematic bicycle model can be
modified as follows:

ẋ = v cos(θ)
ẏ = v sin(θ)

θ̇ =
v

L
tan(γ)

γ = γ0 + γ̇t
γ̇ = ct

(14)

The steering angle is a linear function where the steer-
ing velocity is constant during the steering process. The

Figure 5: Simulation result: the blue dots denote the way-
points, the red line represents the trajectory generated by
our model

trajectory of the robot is no longer an arc of a circle
but a combination of two curves. The first of which is
a clothoid (also referred to as an Euler spiral) when
γ = γ0 + γ̇t and an arc of a circle when γ = ct. In
this case, the simulation result shows a lower quality of
approximation. Given this phenomenon, the robot orien-
tation angle error is defined as the difference between the
orientation angle in the hypothesis where the steering is
instantaneously modified to the final value and the orien-
tation angle in the hypothesis where the steering angle is
continuously modified from the initial to the final value.

eθ =
v

L

(
tan (γf) ∆t−

∫ ∆t

0

tan(γ0 + γ̇τ)dτ

)
=

=
v

γ̇L

(
tan (γf) ∆γ − log

(
cos(γ0)

cos(γf)

))
(15)

where γ0 denotes the initial steering angle, γf =
arctan(Lκ represents the final steering angle, γ̇ stands
for the steering angle velocity, and ∆t is the steering time.

It is observed that Eq. 12 is in accordance with our
intuitions: if the steering angle velocity increases the ori-
entation error angle will decrease; in contrast, the velocity
is proportional to the error.

A strategy where a maximum orientation error eθmax

is allowed can now be contemplated and since the maxi-
mum steering velocity γ̇ is an actuator parameter (which
is constant), the following function for the vehicle veloc-
ity is proposed:

vnew =
eθmax

eθ
vold. (16)

In conclusion, the algorithm must be improved in order
to yield better results. The following possibilities are sug-
gested (Fig. 6):

• Refine the input set of points: interpolate new points;

• Change the vehicle velocity during locomotion (Eq.
16);
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Figure 6: The proposed new strategy

• Define the new windows by including the points
which succeed the decision point in the new working
set.

With regard to an examined sample trajectory, a 3D graph
(Fig. 7) is provided which shows the relative dependency
obtained in terms of the relative error value in each case
(n, d). In Fig. 7, the x axis denotes the skyline (n), the

Figure 7: The relative error depends on the skyline (n)
and decision point (d)

Figure 8: Typical behaviors of the examined approaches

y axis represents the decision point (d), and the z axis
stands for the relative error.

4.2 Experiments

Firstly, the behavior of the algorithm in its own simu-
lation environments was tested; the two presented ap-
proaches (the plain multiple goal pursuit and the win-
dowed multiple goal version) were developed in paral-
lel in Python and MATLAB. These simulations also used
real-world trajectories and the vehicle model was first
a kinematic, and later a dynamic one. Subsequently, it
became necessary to even test the algorithms in Open
Source Robotics Foundation’s (OSRF) Gazebo for two
reasons. Firstly, implementation of the algorithm as a
Robot Operating System (ROS) node was sought and sec-
ondly, a more precise dynamic model of the vehicle al-
ready existed in Gazebo. Gazebo also facilitated the inte-
gration of the useful software as well as agile migration
between development and target.

For these purposes, the algorithm had to be recreated
in C++ not only because of the ROS compatibility but
computational resources as well. Simulation-based exe-
cution yielded no significant deviation from the simulated
tests. In Fig. 8, some of our results are shown regard-
ing the examined trajectories. The x and y axes are in
meters. This simulation is based on real-world measure-
ments taken at the ZalaZone Automotive Test Track in
Zalaegerszeg and the GPS coordinates are assigned us-
ing Universal Transverse Mercator (UTM) because of the
minimal degree of distortion involved. The Follow the
Carrot and speed ratio-based pure pursuit algorithms had
to be implemented in order to experiment with them in
the same environment.

In another experiment, autonomous functionalities
were installed in an electric vehicle (Nissan Leaf). Fig.
9 represents the vehicle in operation. The operational do-
main of this vehicle was limited to the ZalaZone Auto-
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Figure 9: The vehicle used in our experiments

motive Test Track and the university campus, moreover, it
was required to reach a relatively slow speed of 25 km/h.
The vehicle has front-wheel drive, with a wheelbase of
2.70 meters and a track width of 1.77 meters. To ensure
instantaneous localization of the vehicle, two highly ac-
curate Real Time Kinematic (RTK)-capable GPSs were
used. One was KVH’s Fiber Optic Gyro 3D Inertial Nav-
igation System (GEO-FOG 3D INS), the other was Swift
Navigation’s Duro Inertial RTK. These sensors were also
used to capture reference trajectories.

Our software was based on OSRF’s ROS [9]. Our
computing platform first features the NVIDIA Jetson
TX2, later the NVIDIA Jetson AGX Xavier. Low-level
control is realized by using a National Instruments’ Com-
pactRIO Controller, namely cRIO-9039, as the Real-time
and FPGA modules - the NI-9853 CAN, NI-9403 DI, NI-
9205 Voltage Input and NI-9264 Voltage Output Modules
to be exact.

After the algorithm exhibited satisfactory behavior
in the simulation environment, it was tested in a real-
world scenario. During the experiment, the NVIDIA Jet-
son TX2 was used in the Nissan Leaf. The NVIDIA Jet-
son TX2 is a 7.5-watt embedded controller in which the
Ubuntu 18.04 LTS Bionic Beaver along with the ROS
Melodic Morenia were used. The embedded controller
had a memory capacity of 8 GB and memory bandwidth
of 59.7 GB/s as well as NVIDIA’s Denver2, quad-core
ARM Cortex-A57 CPU and integrated 256-core Pascal
GPU installed. During our experiments, only the KVH’s
GEO-FOG 3D INS sensor was used as the source of lo-
calization, the wheel angle reference signal in addition
to the speed reference via CAN were provided, and the
wheel angle and speed were measured back in the same
protocol. Nevertheless, during acquisition of the data, all
the sensory information was logged by two of Velodyne’s
16-channel LIDARs, Sick’s 1-channel Laser Measure-
ment Sensor LMS111 and the camera stream into ROS
bag files. The following chart (Fig. 10) shows an example
of how the algorithm generated reference trajectories for
two bends on the routine track, moreover, the measured
wheel angle is shown.

The waypoints for the algorithm were provided by
driving through a predetermined path then saving as well
as filtering the position and speed data via the way-
point_saver node.

In this experiment, only the multiple goal pursuit al-
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Figure 10: Changes in the wheel angle around two bends

gorithm with one parameter set was used. This set is
better compared to Autoware’s pure pursuit algorithm in
terms of lateral deviation, but the speed ratio-based ver-
sion worked even better. As a result, the multiple goal
pursuit algorithm was able to control the vehicle with
the aforementioned embedded controller at slow speeds
of approximately 25 km/h. The algorithm is able to per-
form smooth and continuous movements along a pre-
defined trajectory, even maneuvering around bends and
along edges.

5. Conclusion

The current paper described the development of a
trajectory-tracking approach, namely the multiple goal
pursuit, and summarized the mathematical and theoret-
ical background needed to understand its working prin-
ciples. Enhancements to and variations in the basic ap-
proach are also described with regard to their benefits and
weaknesses. Furthermore, a brief insight into the devel-
opment process is given. Firstly, an initial version was
developed in our own simulation environment, later the
code became an ROS node and the simulation environ-
ment was replaced by Gazebo. Finally, real-world tests
showed the viability of the new algorithm, which was
tested by an autonomously guided vehicle in a closed but
real-world traffic environment.

One of the benefits of this algorithm is that it can
be tuned more precisely around bends, moreover, it in-
volves more human-like thinking, that is, tracks and fol-
lows more waypoints on the road simultaneously. Fur-
thermore, this approach provides quick and reliable refer-
ence signals for car-like robot kinematics, thus can follow
the trajectory with relatively small errors.

The discussed algorithm was implemented in
MATLAB and C++ as a Robot Operating System
node and our measurements were based on debug
data generated by this node. This implementation
is currently publicly available on GitHub in ad-
dition to other measurements, videos, results and
source codes: https://github.com/szenergy/
szenergy-public-resources.
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[1] Paden, B.; Čáp, M.; Yong, S. Z.; Yershov, D.;
Frazzoli, E.: A survey of motion planning and
control techniques for self-driving urban vehicles,
IEEE Trans. Intell. Veh., 2016, 1(1), 33–35 DOI:
10.1109/TIV.2016.2578706

[2] Ollero, A.; García-Cerezo, A.; Martinez, J.: Fuzzy
supervisory path tracking of mobile reports, Control
Eng. Practice, 1994, 2(2), 313–319 DOI: 10.1016/0967-
0661(94)90213-5

[3] Samuel, M.; Hussein, M.; Mohamad, M. B.: A re-
view of some pure-pursuit based path tracking tech-
niques for control of autonomous vehicle, Int. J.
Computer Applications 2016, 135(1) 35–38 DOI:
10.5120/ijca2016908314

[4] Rodríguez-Castaño, A.; Heredia, G.; Ollero, A.:
Analysis of a GPS-based fuzzy supervised path
tracking system for large unmanned vehicles, IFAC

Proceedings Volumes, 2000, 33(25) 125–130 DOI:
10.1016/S1474-6670(17)39327-8

[5] Kato, S.; Tokunaga, S.; Maruyama, Y.; Maeda,
S.; Hirabayashi, M.; Kitsukawa, Y.; Monrroy, A.;
Ando, T.; Fujii, Y.; Azumi, T.: Autoware on board:
Enabling autonomous vehicles with embedded sys-
tems, in Proceedings of the 9th ACM/IEEE Inter-
national Conference on Cyber-Physical Systems,
2018, 287–296 DOI: 10.1109/ICCPS.2018.00035

[6] Sakai, A.; Ingram, D.; Dinius, J.; Chawla, K.;
Raffin, A.; Paques, A.: PythonRobotics: a Python
code collection of robotics algorithms, 2018, arXiv:
1808.10703

[7] Giesbrecht, J.; Mackay, D.; Collier, J.; Verret, S.:
Path tracking for unmanned ground vehicle naviga-
tion: Implementation and adaptation of the pure pur-
suit algorithm, Defence Research and Development
Canada (DRDC), Suffield, Alberta, Canada, 2005.
https://apps.dtic.mil/sti/pdfs/ADA599492.pdf

[8] Horváth, E.; Hajdu, Cs.; Kőrös, P.: Novel pure-
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