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This paper presents a comparative examination of state-of-the-art non-linear state estimation techniques. First, the Sigma-
Point (SPKF) stochastic estimators are investigated on the basis of the Unscented Transformation. This is followed by the 
technique of non-linear symmetry-preserving observers for non-linear dynamics on the basis of symmetrical LIE groups. 
The variety of the deterministic and stochastic state estimation algorithms is studied the kinematics of ground vehicles. 
Two cases are described that deal with the reliability of path tracking, the convergence and speed of off-line calibration. 
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Introduction 

Vehicles are indispensable in modern society, and 
vehicle safety is consequently of importance in 
everyday life. A lack of information about the state of 
vehicle and parameters presents a major obstacle for the 
development of vehicle control systems. 

The effectiveness of vehicle stability control largely 
depends on the accuracy of the vehicle state parameters 
that are measured by appropriate sensors. Unfortunately, 
measurements from these sensors contain bias, as well 
as electrical noise, and can drift with temperature 
changes. However, the state estimation method is also 
able to dramatically reduce errors introduced by 
measurement and process noise contained in the signal. 

The focus of this work is the non-linear state 
estimation techniques. Firstly, the ‘Sigma-Point 
KALMAN filter family’ (SPKF) is discussed on the basis 
of the ‘Unscented Transformation’ (UT) and 
STERLING’s interpolation [3, 5, 6]. Secondly, the 
symmetry-preserving observer is presented [15, 16, 18], 
which is based on Lie-transformation of invariant 
frames. The various state estimation procedures are then 
examined and compared through an illustrative non-
linear example of vehicle kinematics. 

Sigma-Point KALMAN Filters 

Sigma-Point KALMAN filter [2, 4, 7] is a collective 
name for derivativeless KALMAN filters that employs 
the deterministic sampling based Sigma-point approach 
to calculate the optimal terms of the state estimation. 
Common methods use the Scaled Unscented Transfor-
mation [4] and STERLING’s polynomial interpolation. 

The former replaces the original set of sigma-points 
with a transformed set in order to minimize the errors of 
higher order terms, the latter approximates the 
derivation of the divided difference filter [10, 11] and 
central difference filter in [12]. 

The Scaled Unscented Transformation 

The Scaled Unscented Transformation (SUT) has two 
steps. First, a fixed number of sigma points is chosen to 
capture the desired moments (at least mean and 
covariance) of the original distribution. Then the sigma 
points are propagated through the non-linear function 
and the moments of the transformed variables are 
estimated. The advantage of SUT over the Taylor series 
based approximation is that SUT is better at capturing 
the higher order moments caused by the non-linear 
transformation, as discussed in [1, 8-10]. 

Consider a non-linear function y = g(x) and assume x 
has mean x  and covariance xP . The first two moments 
of y are calculated by the following two steps: 

1) Weighted Sigma-point selection: 

 

X0 = x

Xi = x + (L +λ)Px( )i=1…L
Xi = x − (L +λ)Px( )i=L+1…2L

 (1) 

with weights 

 
w0
m = λ

L+λ       w0
c = λ

L+λ + (1−α2 +β )

wi
m = wi

c = λ
2(L+λ )

 (2) 
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where wi
m, and wi

c  are associated with the ith sigma-

point such that 1
2

0
=∑ =

L

i iw . Symbols λ, α, and β denote 

scaling parameters and ( )
ixPL )( λ+  is the ith column 

of the matrix square root of the weighted xPL )( λ+  
covariance matrix. 

2) Propagation: )( ii XgY =  

 
y ≈ wi

mYi
i=0

2L

∑        Py ≈ wi
c(Yi − y )(Yi − y )T

i=0

2L

∑

Pxy ≈ wi
c(Xi − x )(Yi − y )T

i=0

2L

∑
 (3) 

where y , yP , and xyP  are the approximated mean, 
covariance and cross-covariance respectively. 

The Unscented KALMAN Filter (UKF) 

The algorithm of the UKF according to Refs. [3, 7, 8] 
consists of the following steps: 

1) Initialization: 

 x̂0 = E x0[ ] , Px0 = E (x0 − x0 )(x0 − x0 )
T"

#
$
%  (4) 

 x̂0
a = E x̂0

a!
"

#
$= x̂0

T v0
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#
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T
 (5) 

 P0
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0 Rv 0
0 0 Rn

!
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#
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%

&
&
&
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 (6) 

2) State estimation for ∞= …1k : 
a) Calculate Sigma-points: 

 Xk−1
a = x̂k−1

a x̂k−1
a +γ Pk−1

a x̂k−1
a −γ Pk−1

a"

#
$

%

&
'  (7) 

b) Time-update: 

 

Xi,k|k−1
x = f (Xi,k−1

x ,Xk−1
v ,uk−1),     i = 0,…, 2L

x̂k
− = wi

mXi,k|k−1
x

i=0

2L

∑

Pxk
− = wi

c(Xi,k|k−1
x − x̂k

−)(Xi,k|k−1
x − x̂k

−)T

i=0

2L

∑

 (8) 

c) Measurement-update: 

 

Yi,k|k−1 = h(Xi,k|k−1
x ,Xk−1

n ),      i = 0,…, 2L

ŷk
− = wi

mYi,k|k−1
i=0

2L

∑

Pŷk = wi
c(Yi,k|k−1 − ŷk

−)(Yi,k|k−1 − ŷk
−)T

i=0

2L

∑

Pxkyk = wi
c(Xi,k|k−1

x − x̂k
−)(Yi,k|k−1 − ŷk

−)
i=0

2L

∑

 (9) 

 

Kk = Pxkyk Pŷk
−1

x̂k = x̂k
− +Kk (yk − ŷk

−)

Pxk = Pxk
− −KkPŷkKk

T

 (10) 

where xk
a = xk

T vk
T nk

T!
"#

$
%&

T
and Xk

a = (Xk
x )T (Xk

v )T (Xk
n )T!

"#
$
%&

T

are the L  dimension vectors of the augmented states 
and Sigma-points respectively, vR  and nR  are the 
covariances of the process and measurement noise 
respectively, λγ += L , λ = α2(L+κ)+L, α = 10-3, κ = 
0, β = 2, and wi is the weighting parameter defined in 
Eq.(2). 

The Central-Difference KALMAN Filter 

This approach is based on STERLING’s polynomial 
interpolation, which was used in the derivations of 
divided difference filter [10, 11] and central difference 
filter in Ref. [12]. The result of this approximation can 
be used for sigma-point approach as in the case of SUT. 
The algorithm consists of the following steps: 

1) Weighted Sigma-point selection: 

 

X0 = x

Xi = x + h Px( )i=1…L
Xi = x − h Px( )i=L+1…2L

 (11) 

with weights 

 w0
m = h2−L

h2 , wi
m = 1

2h2 , wi
c1 = 1

4h2 , wi
c2 = h2−1

4h2 , (12) 

where wi
m, and wi

c  are associated with i = 1, …, 
2L sigma-point. 

2) Initialization: the same as defined in Eqs.(4-6) 
3) State estimation for k = 1, …, ∞: 

a) Sigma-points for time-update: 

 x̂k−1
av = x̂k−1 v"

#
$
% , Pk−1

av =
Pxk−1 0

0 Rv

"

#

$
$

%

&

'
'

 (13) 

 Xk−1
av = x̂k−1

av x̂k−1
av + h Pk−1

av x̂k−1
av − h Pk−1

av
"

#
$

%

&
'  (14) 

b) Time-update: 

 

Xi,k|k−1
x = f (Xi,k−1

x ,Xk−1
v ,uk−1),      i = 0,…, 2L

x̂k
− = wi

mXi,k|k−1
x

i=0

2L

∑

Pxk
− = wi

c1 (Xi,k|k−1
x − XL+i,k|k−1

x )2 +
i=1

L

∑

  wi
c2 (Xi,k|k−1

x + XL+i,k|k−1
x − 2X0,k|k−1

x )2

i=1

L

∑

 (15) 
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c) Sigma-points for measurement-update: 

 x̂k−1
an = x̂k

− n"
#$

%
&'

, Pk|k−1
an =

Pxk
− 0

0 Rn

"

#

$
$

%

&

'
'  (16) 

Xk|k−1
an = x̂k|k−1

an x̂k|k−1
an + h Pk|k−1

an x̂k|k−1
an − h Pk|k−1

an
"

#
$

%

&
'  (17) 

d) Measurement-update: 

 

Yi,k|k−1 = h(Xi,k|k−1
x ,Xk|k−1

n ),      i = 0,…, 2L

ŷk
− = wi

mYi,k|k−1
i=0

2L

∑

Pŷk = wi
c1 (Yi,k|k−1 −YL+i,k|k−1)2

i=0

2L

∑ +

  wi
c2 (Yi,k|k−1 +YL+i,k|k−1 − 2Y0,k|k−1)2

i=0

2L

∑

Pxkyk = w1
c1Pxk

− (Y1:L,k|k−1 −YL+1:2L,k|k−1)T

Kk = Pxkyk Pŷk
−1

x̂k = x̂k
− +Kk (yk − ŷk

−)

Pxk = Pxk
− −KkPŷkKk

T

 (18) 

Symmetry-Preserving Observers 

Among many problems in control theory, the symmetric 
nature of the system can be utilized, such as in the case 
of optimal control for feedback or regulations. The 
symmetry properties can also be used in the design of 
observers. Symmetry-preserving observers are also 
known as invariant observers that are based on the 
differential geometric background of abstract LIE-
groups [15, 16, 18]. 

The constructive algorithm can be defined for 
designing invariant observers, which is based on the 
group transformation of symmetry. The aim is to 
produce invariant frames and invariant output errors to 
transform a locally asymptotically convergent observer 
around an equilibrium point into an invariant one, 
retaining its first-order approximation. The method in 
Refs. [16, 18] benefits from the fact that the error 
equations and the first-order approximation can be 
calculated explicitly and the relationships can be 
defined globally. In addition, the invariant error 
equations make stability issues easier to deal with [19-
21]. 

Assumptions 

Suppose G is a LIE-group with identity e on manifold Σ. 
The group transformation (ϕg )g∈G  on Σ is a smooth 
mapping 

 (g,ξ )∈G ×Σ→ϕg(ξ )∈ Σ  (19) 

such that ϕe(ξ ) = ξ  and ϕg2 (ϕg1 (ξ )) =ϕg2g1 (ξ )  for ζ, 

g1, and g2. The transformation group is local if ϕg(ξ )  is 
defined only when g lies sufficiently near to e. We 
consider only local transformations. 

Invariant observers are designed for the smooth non-
linear system 

 d
dt x = f (x,u) , y = h(x,u)  (20) 

where x, u, and y belong to the open subsets X ⊂ ℝn,  
⊂U ℝm, and ⊂Y ℝp respectively and p ≤ n . Let r ≤ n  

be the dimension of the LIE-group. We assume that for 
each x the mapping x→φg(x)  is full rank. Time 
functions u(t) and y(t) are known. 

Invariant Pre-Observer 

For the differential geometric description of the 
symmetric observers [14], the following definitions and 
theorems should be introduced: 
Definition 1. The group of local transformation on 
manifold UX×  is expressed by 

 (X,U) = (φg(x),ψg(u))  (21) 

where φg(x),ψg(u) is local diffeomorphism and g ∈G  

Definition 2. System d
dt x = f (x,u)  is G-invariant, if 

f (φg(x),ψg(u)) = Dφg(x) ⋅ f (x,u)  for g, x, u. Thus, the 

system remains unchanged for the local transformation,
!X = f (X,U) . 

Definition 3. The output y = h(x,u) is G-equivariant, if 
there exists ρg transformation on Y, such that g ∈G  
and h(φg(x),ψg(u)) = ρg(h(x,u))  for g, x, u. Thus, the 

output remains unchanged for the local transformation, 
Y = h(X,U) . 
Definition 4. The vector field w is G-invariant on 
manifold X, if d

dt x = w(x)  is invariant to the 

transformation, i.e. w(φg(x)) = Dφg(x) ⋅w(x) for g, x. 

Definition 5. An invariant frame (w1, w2, …, w3) 
consists of n linearly point-wise independent G-
invariant vector fields on X thus 
(w1(x),w2(x),…,wn (x))  is a basis of the tangent space 
TX(x) . 
Lemma 1. The invariant frame can be constructed from 
the canonical basis of X. The vector field defined by 
 wi(x) = (Dφγ (x) )

−1 ⋅ ∂∂xi
 (22) 

for i = 1, …, n forms an invariant frame. 
Definition 6. The system d

dt x̂ = F(x̂,u, y)  is a pre-

observer, if F(x,u,h(x,u)) = f (x,u)  is satisfied for x and 
u. Furthermore, if lim  x̂(t) = x(t)  as t→∞ , then the 
pre-observer is asymptotic. 
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Definition 7. The pre-observer is G-invariant, if  

),,ˆ()ˆ())(),(),ˆ(( yuxFxDyuxF gggg ⋅= ϕρψϕ  (23) 

is satisfied for g, x̂ , u, and y i.e. the observer remains 
unchanged for the group transformation on YU,,X . 
Thus, X = φg(x) , U =ψg(u) , Y = ρg(y) , and 

d
dt X̂ = F(X̂,U,Y ) . 

An invariant observer is an asymptotic G-invariant 
pre-observer. Moreover, if the pre-observer is G-
invariant and rank (F) = dim y , then the output map y is 
G-equivariant. 
Definition 8. Smooth map (x̂,u, y)→ E(x̂,u, y)∈ ℝp is 
an invariant output error if 

a) y→ E(x̂,u, y) is invertible for x̂ , u, and y 
b) E(x̂,u,h(x̂,u)) = 0  for x̂  and u 
c) E(φg(x̂),ψg(u),ρg(y)) = E(x̂,u, y)  for x̂ , u, and y. 

The first two properties mean E is an output error, the 
third expresses the invariance. The introduction of the 
invariant error is necessary, because the output error 
ŷ− y  does not usually preserve the geometry of the 
system [21]. 

The following three theorems [15, 16] support the 
construction of the symmetry-preserving observers. 
Theorem 1. The observer d

dt x̂ = F(x̂,u, y)  is a G-

invariant pre-observer for the G-invariant non-linear 
Eq.(20) with a G-equivariant output if and only if 

F(x̂,u, y) = f (x̂,u)+ Li(I(x̂,u),E(x,u, y))
i=1

n

∑ wi(x̂)  (24) 

where E is an invariant output error, (x̂,u)→ I(x̂,u)∈
ℝn+m&r is a full rank function, Li  is a smooth function, 
such that Li(I(x̂,u), 0) = 0  and (w1,w2,…,wn )  is an 
invariant frame. Since Li(I,E) = Li(I,E)E  

Li(I,E)wi
i=1

n

∑ = wi(Li(I,E)
i=1

n

∑ E)

= w1 … wn( )
L1(I,E)
!

Ln (I,E)

"

#

$
$
$
$

%

&

'
'
'
'

E

 (25) 

The observer can be written as follows 

F(x̂,u, y) = f (x̂,u)+W (x̂)L(I(x̂,u),E(x̂,u, y))E(x̂,u, y). (26) 

Theorem 2. The following statements are valid: 
• (x̂,u, y)→ E(x̂,u, y)  invariant output error exists, 
• there is a (x̂,u)→ I(x̂,u)∈ℝn+m&r invariant function, 
• every other invariant output error has the form of 

  !E(x̂,u, y) = L(I(x̂,u),E(x̂,u, y))  (27) 

where L is a smooth function such that L(I, 0) = 0 and 
E →L(I,E) is invertible. 

Theorem 3. Consider the equilibrium of a non-linear 
system 
 f (x,u ) = 0  and y = h(x,u )   

Assume that the linearized system A,B,C,D  around 
this equilibrium is observable, where 

A = ∂f
∂x (x,u ) , B = ∂f

∂u (x,u ) ,C = ∂h
∂x (x,u ) , A = ∂h

∂u (x,u )  

and let L be such that A+ LC is a stable matrix. From 
the locally asymptotically convergent observer 

 d
dt x̂ = f (x̂,u)+ L(ŷ− y) , ŷ = h(x̂,u)  (28) 

an invariant observer can be constructed by the same 
linear approximation 

d
dt x̂ = f (x̂,u)+W (x̂)L(I(x̂,u),E(x̂,u, y))E(x̂,u, y)  (29) 

where L = −W (x)−1LV−1  and V = ∂E
∂y(x,u,y )  is an 

invertible matrix of pp×  dimensions. 
There is no general algorithm for designing the Li 

gain functions of Theorem 1. However, if we consider 
the following invariant state error 

 η(x, x̂) = φγ (x)(x̂)−φγ (x)(x)  (30) 

instead of the xx −ˆ  state error, where )(xγ  is the 
solution of 
 φg

a (x) = c  (31) 

with respect to g, then the invariant error will only 
depend on the I(x,u) trajectories. 

Constructive Algorithm 

Consider an invariant system, i.e. unchanged by 
transformation Eq.(21) with an equivariant output 
(Definition 3). The non-linear observer design for non-
linear dynamic systems [10, 11] can be divided into the 
following steps: 
a) Choose a G LIE-group and a group transformation 

taking into account the symmetrical properties of 
the system. 

b) Solve the normalization Eq.(31). Build an 
invariant error E and the complete set of scalar 
invariants I.  

c) Construct the invariant frame Eq.(22). 
d) Determine the pre-observer Eq.(25). 
e) Linearize the system f (x,u ) = 0  around the 

equilibrium and obtain A,B,C,D matrices. Check 
the observability and design an invariant observer 
from the chosen linear observer by using Theorem 
3. Choose an appropriate L . 

f) Choose the parameters of the linearized error 
equations, based on the invariant state-errors η, 
such that the invariant system will be 
asymptotically stable. 
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Then the non-linear symmetry-preserving observer is 
asymptotically stable, and converges locally and 
exponentially along all system trajectories. 

Case Study: A Non-Holonomic Vehicle 

In this section, the previously introduced state 
estimation procedures are employed for an example of a 
non-holonomic vehicle tracking control. The well-
known model in the robotics of the simplified vehicle 
kinematics is considered. The tracking is maintained by 
satisfying the kinematic constraints with the appropriate 
choice of reference signals. 

Kinematic Model 

The simplified kinematic model of the vehicle can be 
written in the following form 

 
!x
!y
!θ

!

"

#
#
#

$

%

&
&
&
=

ucosθ
usinθ
uv

!

"

#
#
#

$

%

&
&
&

, h(x, y,θ ) = (x, y)  (32) 

where u is the velocity, v is the curvature, i.e. a function 
of the steering angle and h is the measured output. All 
signals contain additive Gaussian noise. The model 
assumes that the contact point of the wheel and the 
ground does not slip. Notice, that the linearized system 
is not observable. 

Tracking 

For path tracking the control signals are set to satisfy the 
kinematic constraints, thus u and v are calculated as 
follows: 

u(t) = !xr
2(t)+ !yr

2(t)  and v(t) = !!yr (t) !xr (t)− !xr (t)!!yr (t)
u3(t)

 (33) 

where xr(t) and yr(t) are time functions of the reference 
signal. The initial conditions for tracking control is 

 θr (0) = tan
−1 !yr (0)
!xr (0)

"

#
$

%

&
' . (34) 

Hence, the reference signals for the vehicle velocity 
and steering function can be calculated. In the 
simulations, sinusoidal path tracking is implemented 
using the reference signals 

 xr (t) = t, and yr (t) = Asin(ωt).  

Invariant Observer Design 

Group Transformation 

Eq.(32) is independent of the origin and of the 
orientation of the frame chosen, i.e. it is invariant with 

regards to the group of rotations and translations. We 
chose the Lie-group G = SE(2) and defined the group 
transformation as follows: 

 

φ(xg,yg,θg )(x, y,θ ) =

xg
yg
θg

!

"

#
#
#
#

$

%

&
&
&
&

⋅
x
y
θ

!

"

#
#
#

$

%

&
&
&
=

=

x cosθg − ysinθg + xg
xsinθg + ycosθg + yg

θ +θg

!

"

#
#
#
#

$

%

&
&
&
&

 (35) 

 

ψ(xg,yg,θg )(u,v) =
u
v

!

"
#

$

%
&

ρ(xg,yg,θg )(x, y) =
x cosθg − ysinθg + xg
xsinθg + ycosθg + yg

!

"

#
#

$

%

&
&

 

One can check that Eq.(32) is invariant to the 
transformations ϕ, and ψ in terms of Definition 1 and 
the output is equivariant to transformation ρ in terms of 
Definition 3. 

Invariant Output Errors 

The normalization Eq.(31) for :0=c  

 

0 = x cosθγ − ysinθγ + xγ
0 = xsinθγ + ycosθγ + yγ
0 =θ +θγ

 (36) 

The solution of Eq.(36), the scalar invariants and output 
errors can be written as follows respectively 

xγ
yγ
θγ

!

"

#
#
#
#

$

%

&
&
&
&

=
x
y
θ

!

"

#
#
#

$

%

&
&
&

−1

=

−x cosθ − ysinθ
xsinθ − ycosθ

−θ

!

"

#
#
##

$

%

&
&
&&
= γ

x
y
θ

!

"

#
#
#

$

%

&
&
&

 (37) 

 I(x, y,θ,u,v) =ψγ (x,y,θ )(u,v) =
u
v

!

"
#

$

%
&  (38) 

 

E = ρ(xγ ,yγ ,θγ )(x̂, ŷ)− ρ(xγ ,yγ ,θγ )(x, y)

= cosθ̂ sinθ̂
−sinθ̂ cosθ̂

"

#
$
$

%

&
'
'

x̂ − x
ŷ− y

"

#
$$

%

&
''

 (39) 

Invariant Frame 

W = (Dφγ (x,y,θ )(x, y,θ ))
−1 ∂

∂(x,y,θ ) =

= Dφγ (x,y,θ )(x, y,θ ) =
cosθ −sinθ 0
sinθ cosθ 0
0 0 1

#

$

%
%
%

&

'

(
(
(

. (40) 
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Invariant pre-observer 

d
dt

x̂
ŷ

θ̂

!

"

#
#
#

$

%

&
&
&
=

ucosθ̂
usinθ̂
uv

!

"

#
#
#
#

$

%

&
&
&
&

+

cosθ̂ −sinθ̂ 0
sinθ̂ cosθ̂ 0

0 0 1

!

"

#
#
#
#

$

%

&
&
&
&

L ×

  cosθ̂ sinθ̂
−sinθ̂ cosθ̂

!

"
#
#

$

%
&
&

x̂ − x
ŷ− y

!

"
##

$

%
&&

 (41) 

where L  is a smooth 23×  gain matrix, whose elements 
depend on the invariant error E and the invariants I. 

Error Equations and Error Dynamics 

η =

ηx
ηy

ηθ

!

"

#
#
#
#

$

%

&
&
&
&

= γ (x̂, ŷ,θ̂ )
x̂
ŷ

θ̂

!

"

#
#
#

$

%

&
&
&
−γ (x̂, ŷ,θ̂ )

x
y
θ

!

"

#
#
#

$

%

&
&
&
=

=

(x̂ − x)cosθ̂ + (ŷ− y)sinθ̂

−(x̂ − x)sinθ̂ + (ŷ− y)cosθ̂

(θ̂ −θ )

!

"

#
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It can be seen that the invariant error equations are 
independent of the trajectory and only depend on the 
relative quantities ηx, ηy, and ηθ and the I invariants. 

Stability and Convergence  

The weighting matrix is defined as follows 

 L =

− |u | a ubEy −uv

uv−ubEy − |u | c

0 −ub

"

#

$
$
$
$

%

&

'
'
'
'

, (44) 

where a and b are care positive scalars and Ey = ηy. The 
invariant error dynamics can be made locally 
asymptotically stable. Furthermore, the resulting 
symmetry-preserving observer is almost globally 

asymptotically convergent, i.e. it converges any initial 
condition except for one as described in Refs. [15-16]. 

Simulation Results 

The state estimation techniques are illustrated in two 
tracking examples. For comparative purposes, the 
following algorithms have been implemented: Extended 
KALMAN Filter (EKF), Central Difference and 
Unscented KALMAN Filter (CKF, UKF) and the 
symmetry preserving observer (SYM) discretized by the 
sample time of the sigma-point estimators. 

The reference paths are xr (t) = t,  and 
yr (t) = Asin(ωt) , where A = 3 m and ω = π/5 rad s-1. 
Zero mean additive Gaussian noise is assumed with 
standard deviations of 0.01 and 0.005 for the process 
noise and 0.02 for the measurement noise. The sampling 
time is Ts = 0.1 s. The initial values are 
x0
est = y0

est =θ0
est =1 , and x0 = y0 = 0 . 

Example 1  

The vehicle starts from the origin of the xy-plane with 
large initial estimation error and tracks a sinusoidal 
path. Fig.1 shows the estimated output positions of the 
vehicle using sigma-point KALMAN filters and 
symmetry-preserving observers. The estimation errors 
of different algorithms can be seen in Figs.2 and 3.  

The errors are smaller and show smoother signals in 
the case of the SPKF estimators, which was expected, 
since the SYM observer is deterministic. Large errors 
appear at the peak values of the reference signals; 
however, both estimation techniques achieved the same 
satisfactory results in spite of the relatively small 
sampling frequency. 

 
Figure 2: Estimation errors of the sigma-point and extended 

KALMAN filters from Example 1 
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Root-mean-square errors can be seen in Table 1. We 
can conclude that among the processes of state 
estimation techniques the SYM observer is competitive 
with SPKF estimators.  

Example 2 

In this example the vehicle performs an off-line 
estimation before movement starts, followed by an on-
line estimation along a sinusoidal path. It is notable that 
in the stationary state the velocity is zero and at the 
beginning of movement the velocity changes to a non-
zero value abruptly, see Eq.(33). Figs.4-7 illustrate the 
estimated output positions and the measurement errors 
for the sigma-point estimators and the invariant 
observers respectively 

The error signals show a quick convergence in the 
case of the symmetry-preserving observer. The speed of 
convergence depends on the parameters set in the L  
matrix; however, high gains can cause the observer to 
be divergent and make larger errors. Since there are no 
u and δ signals in the stationary position and the 
orientation is not directly measured, the orientation can 
only be estimated after the vehicle starts moving. 

The error signal oscillates around zero in a similar 
way to Example 1. Due to calibration, smaller errors 
appear. The invariant observer and sigma-point 
estimators have the same magnitude of error 
components. The root-mean-square errors of the 
simulation can be seen in Table 2.  

 

Figure 3: Estimation errors of the symmetry-preserving 
observer (SYM) from Example 1 

 
Figure 6: Estimation errors of the sigma-point and the 

extended KALMAN filters from Example 2 

 
Figure 4: Estimated output position of the vehicle using 
sigma-point state estimation (UKF, CKF) and extended 

KALMAN Filter (EKF) from Example 2 

 
Figure 5: Estimated output position of the vehicle using 
symmetry-preserving observer (SYM) from Example 2 

Figure 7: Estimation errors of the symmetry-
preserving observer (SYM) from Example 2 

Table 1: Root-mean-squared errors of the estimated signals 
from Example 1 

RMSE x, m y, m θ, rad 
UKF 0.1368 0.1587 0.0338 
CKF 0.1366 0.1577 0.0336 
EKF 0.1371 0.1551 0.0352 
SYM 0.1371 0.1628 0.0455 

 
Table 2: Root-mean-square errors of the estimated signals 

from Example 2 

RMSE x, m y, m θ, rad 
UKF 0.0998 0.1180 0.0627 
CKF 0.0993 0.1175 0.0628 
EKF 0.1013 0.1165 0.0648 
SYM 0.1264 0.1453 0.0760 
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 Conclusion 

In this paper we presented a comparison of two different 
recently developed state estimation techniques. The 
Sigma-Point (SPKF) stochastic estimator is based on the 
Unscented Transformation and the non-linear 
symmetry-preserving observers are based on the group 
transformation of symmetrical LIE groups and invariant 
frames. Two examples are considered for the estimation 
of vehicle kinematics: the first example deals with the 
path tracking reliability of the vehicle; the second 
example examines the convergence and the speed of the 
off-line calibration followed by path tracking. 

The examples illustrate that for non-linear systems in 
noisy environments the use of stochastic state-
estimators is needed. Moreover the Sigma-point 
approach provides more accurate estimation results than 
the commonly used non-linear EKF state estimators. 

The symmetry preserving observers for non-linear 
systems benefit from their constructive design method, 
which provides local asymptotic convergence. This 
method can be utilized by non-linear applications in 
which the physical and mechanical symmetry properties 
of the system can be exploited. 
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